Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Betzel is active.

Publication


Featured researches published by Christian Betzel.


Science | 2013

Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser

Karol Nass; Daniel P. DePonte; Thomas A. White; Dirk Rehders; Anton Barty; Francesco Stellato; Mengning Liang; Thomas R. M. Barends; Sébastien Boutet; Garth J. Williams; Marc Messerschmidt; M. Marvin Seibert; Andrew Aquila; David Arnlund; Sasa Bajt; Torsten Barth; Michael J. Bogan; Carl Caleman; Tzu Chiao Chao; R. Bruce Doak; Holger Fleckenstein; Matthias Frank; Raimund Fromme; Lorenzo Galli; Ingo Grotjohann; Mark S. Hunter; Linda C. Johansson; Stephan Kassemeyer; Gergely Katona; Richard A. Kirian

Diffraction Before Destruction A bottleneck in x-ray crystallography is the growth of well-ordered crystals large enough to obtain high-resolution diffraction data within an exposure that limits radiation damage. Serial femtosecond crystallography promises to overcome these constraints by using short intense pulses that out-run radiation damage. A stream of crystals is flowed across the free-electron beam and for each pulse, diffraction data is recorded from a single crystal before it is destroyed. Redecke et al. (p. 227, published online 29 November; see the Perspective by Helliwell) used this technique to determine the structure of an enzyme from Trypanosoma brucei, the parasite that causes sleeping sickness, from micron-sized crystals grown within insect cells. The structure shows how this enzyme, which is involved in degradation of host proteins, is natively inhibited prior to activation, which could help in the development of parasite-specific inhibitors. In vivo crystallization and serial femtosecond crystallography reveal the structure of a sleeping sickness parasite protease. [Also see Perspective by Helliwell] The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the “diffraction-before-destruction” approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.


Nature Methods | 2012

In vivo protein crystallization opens new routes in structural biology

Rudolf Koopmann; Karolina Cupelli; Karol Nass; Daniel P. DePonte; Thomas A. White; Francesco Stellato; Dirk Rehders; Mengning Liang; Jakob Andreasson; Andrew Aquila; Sasa Bajt; Miriam Barthelmess; Anton Barty; Michael J. Bogan; Christoph Bostedt; Sébastien Boutet; John D. Bozek; Carl Caleman; Nicola Coppola; Jan Davidsson; R. Bruce Doak; Tomas Ekeberg; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Heinz Graafsma; Lars Gumprecht; J. Hajdu; Christina Y. Hampton

Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo–grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.


FEBS Journal | 2011

Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis

Tse Siang Kang; Dessislava Georgieva; Nikolay Genov; Mario Tyago Murakami; Mau Sinha; Ramasamy Prem Kumar; Punit Kaur; Sanjit Kumar; Sharmistha Dey; Sujata Sharma; Alice Vrielink; Christian Betzel; Soichi Takeda; Raghuvir K. Arni; Tej P. Singh; R. Manjunatha Kini

Snake venoms are cocktails of enzymes and non‐enzymatic proteins used for both the immobilization and digestion of prey. The most common snake venom enzymes include acetylcholinesterases, l‐amino acid oxidases, serine proteinases, metalloproteinases and phospholipases A2. Higher catalytic efficiency, thermal stability and resistance to proteolysis make these enzymes attractive models for biochemists, enzymologists and structural biologists. Here, we review the structures of these enzymes and describe their structure‐based mechanisms of catalysis and inhibition. Some of the enzymes exist as protein complexes in the venom. Thus we also discuss the functional role of non‐enzymatic subunits and the pharmacological effects of such protein complexes. The structures of inhibitor–enzyme complexes provide ideal platforms for the design of potent inhibitors which are useful in the development of prototypes and lead compounds with potential therapeutic applications.


IUCrJ | 2014

Serial crystallography on in vivo grown microcrystals using synchrotron radiation

Cornelius Gati; Gleb Bourenkov; Marco Klinge; Dirk Rehders; Francesco Stellato; Dominik Oberthür; Oleksandr Yefanov; Benjamin Philip Sommer; Stefan Mogk; Michael Duszenko; Christian Betzel; Thomas R. Schneider; Henry N. Chapman

The structure solution of T. brucei cathepsin B from 80 in vivo grown crystals with an average volume of 9 µm3 obtained by serial synchrotron crystallography at a microfocus beamline is reported.


IUCrJ | 2014

Room-temperature macromolecular serial crystallography using synchrotron radiation

Francesco Stellato; Dominik Oberthür; Mengning Liang; Richard Bean; Cornelius Gati; Oleksandr Yefanov; Anton Barty; Anja Burkhardt; Pontus Fischer; Lorenzo Galli; Richard A. Kirian; Jan Meyer; Saravanan Panneerselvam; Chun Hong Yoon; Fedor Chervinskii; Emily Speller; Thomas A. White; Christian Betzel; Alke Meents; Henry N. Chapman

The room-temperature structure of lysozyme is determined using 40000 individual diffraction patterns from micro-crystals flowing in liquid suspension across a synchrotron microfocus beamline.


Structure | 1995

Crystal structure of catalase HPII from Escherichia coli

Jerónimo Bravo; Núria Verdaguer; José Tormo; Christian Betzel; Jack Switala; Peter C. Loewen; Ignacio Fita

BACKGROUND Catalase is a ubiquitous enzyme present in both the prokaryotic and eukaryotic cells of aerobic organisms. It serves, in part, to protect the cell from the toxic effects of small peroxides. Escherichia coli produces two catalases, HPI and HPII, that are quite distinct from other catalases in physical structure and catalytic properties. HPII, studied in this work, is encoded by the katE gene, and has been characterized as an oligomeric, monofunctional catalase containing one cis-heme d prosthetic group per subunit of 753 residues. RESULTS The crystal structure of catalase HPII from E. coli has been determined to 2.8 A resolution. The asymmetric unit of the crystal contains a whole molecule, which is a tetramer with accurate 222 point group symmetry. In the model built, that includes residues 27-753 and one heme group per monomer, strict non-crystallographic symmetry has been maintained. The crystallographic agreement R-factor is 20.1% for 58,477 reflections in the resolution shell 8.0-2.8 A. CONCLUSIONS Despite differences in size and chemical properties, which were suggestive of a unique catalase, the deduced structure of HPII is related to the structure of catalase from Penicillium vitale, whose sequence is not yet known. In particular, both molecules have an additional C-terminal domain that is absent in the bovine catalase. This extra domain contains a Rossmann fold but no bound nucleotides have been detected, and its physiological role is unknown. In HPII, the heme group is modified to a heme d and inverted with respect to the orientation determined in all previously reported heme catalases. HPII is the largest catalase for which the structure has been determined to almost atomic resolution.


Journal of Immunology | 2005

Dimerization of the Major Birch Pollen Allergen Bet v 1 Is Important for its In Vivo IgE-Cross-Linking Potential in Mice

Isabella Schöll; Yuliya Shedziankova; Alexander Bergmann; Petra Verdino; Regina Knittelfelder; Tamara Kopp; Brigitte Hantusch; Christian Betzel; Karsten Dierks; Otto Scheiner; George Boltz-Nitulescu; Walter Keller; Erika Jensen-Jarolim

In type I allergy, the cross-linking of membrane IgE on B lymphocytes and of cytophilic IgE on effector cells by their respective allergens are key events. For cross-linking two IgE molecules, allergens need at least two epitopes. On large molecules, these could be different epitopes in a multivalent, or identical epitopes in a symmetrical, fashion. However, the availability of epitopes may be limited on small allergens such as Bet v 1, the major birch pollen allergen. The present work analyzes whether dimerization is required for the cross-linking capacity of this allergen. In immunoblots, murine monoclonal and polyclonal human Bet v 1-specific Abs detected, besides a Bet v 1 monomer of 17 kDa, a dimer of 34 kDa. In dynamic light scattering, Bet v 1 appeared as dimers and even multimers, but a single condition could be defined where it behaved exclusively monomerically. Small-angle x-ray scattering of the monomeric and dimeric samples resulted in diagrams agreeing with the calculated models. Circular dichroism measurements indicated that the structure of Bet v 1 was preserved under monomeric conditions. Skin tests in Bet v 1-allergic mice were positive with Bet v 1 dimer, but remained negative using the monomer. Furthermore, in contrast to dimeric Bet v 1, the monomer was less capable of activating murine memory B cells for IgE production in vivo. Our data indicate that the presentation of two identical epitopes by dimerized allergens is a precondition for cross-linking of IgE on mast cells and B lymphocytes.


Journal of Molecular Biology | 2002

Crystal structure of the jacalin-T-antigen complex and a comparative study of lectin-T-antigen complexes

A. Arockia Jeyaprakash; P. Geetha Rani; G. Banuprakash Reddy; Sankaran Banumathi; Christian Betzel; A. Surolia; M. Vijayan

Thomsen-Friedenreich antigen (Galbeta1-3GalNAc), generally known as T-antigen, is expressed in more than 85% of human carcinomas. Therefore, proteins which specifically bind T-antigen have potential diagnostic value. Jacalin, a lectin from jack fruit (Artocarpus integrifolia) seeds, is a tetramer of molecular mass 66kDa. It is one of the very few proteins which are known to bind T-antigen. The crystal structure of the jacalin-T-antigen complex has been determined at 1.62A resolution. The interactions of the disaccharide at the binding site are predominantly through the GalNAc moiety, with Gal interacting only through water molecules. They include a hydrogen bond between the anomeric oxygen of GalNAc and the pi electrons of an aromatic side-chain. Several intermolecular interactions involving the bound carbohydrate contribute to the stability of the crystal structure. The present structure, along with that of the Me-alpha-Gal complex, provides a reasonable qualitative explanation for the known affinities of jacalin to different carbohydrate ligands and a plausible model of the binding of the lectin to T-antigen O-linked to seryl or threonyl residues. Including the present one, the structures of five lectin-T-antigen complexes are available. GalNAc occupies the primary binding site in three of them, while Gal occupies the site in two. The choice appears to be related to the ability of the lectin to bind sialylated sugars. In either case, most of the lectin-disaccharide interactions are at the primary binding site. The conformation of T-antigen in the five complexes is nearly the same.


Journal of Chromatography B: Biomedical Sciences and Applications | 2001

Structure and function of proteins involved in milk allergies.

Sujata Sharma; Pravindra Kumar; Christian Betzel; Tej P. Singh

Allergy to milk proteins has been defined as any adverse reaction mediated by immunological mechanisms to one or several of proteins found in milk. The milk allergy has been classified according to the onset of symptoms as immediate or delayed type. The milk allergy seems to be manifested by three major proteins found in milk: alpha-lactalbumin, beta-lactoglobulin and caseins. The structural comparison of allergenic sites in alpha-lactalbumin and beta-lactoglobulin with the structure of lactoferrin has clearly shown that yet another major milk protein lactoferrin also possesses allergenic sites and thus may qualify to be an allergen. The heat treatment of milk proteins considerably reduces their allergenicity.


Expert Review of Proteomics | 2008

Proteome analysis of snake venom toxins: pharmacological insights

Dessislava Georgieva; Raghuvir K. Arni; Christian Betzel

Snake venoms are an extremely rich source of pharmacologically active proteins with a considerable clinical and medical potential. To date, this potential has not been fully explored, mainly because of our incomplete knowledge of the venom proteome and the pharmacological properties of its components, in particular those devoid of enzymatic activity. This review summarizes the latest achievements in the determination of snake venom proteome, based primarily on the development of new strategies and techniques. Detailed knowledge of the venom toxin composition and biological properties of the protein constituents should provide the scaffold for the design of new more effective drugs for the treatment of the hemostatic system and heart disorders, inflammation, cancer and consequences of snake bites, as well as new tools for clinical diagnostic and assays of hemostatic parameters.

Collaboration


Dive into the Christian Betzel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tej P. Singh

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfram Saenger

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Jens P. Fürste

Free University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge