Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Bigler is active.

Publication


Featured researches published by Christian Bigler.


Aquatic Sciences | 2000

Do diatoms in the Swiss Alps reflect the length of ice-cover?

André F. Lotter; Christian Bigler

Abstract: Diatom analyses in the water column, sediment traps, surficial sediments as well as in a short sediment core from Hagelseewli (2339 m asl, Swiss Alps) give information about the present-day seasonal cycle of diatom blooms, taphonomic processes in the lake basin and the lakes history. Analyses of surficial sediments show that water depth and thus light and nutrient availability is the most important factor influencing the production and distribution of diatom assemblages in Hagelseewli, and that periphytic diatom valves deposited in the deeper part of the basin originate from the shallow, littoral parts and are transported to the central part by processes such as lateral currents or sediment focussing. The lake is characterised by a very short period (2-3 months) of open water. Water-column and sediment-trap data revealed that planktonic diatoms bloom during and after the ice break-up, whereas mainly periphytic Fragilaria species entered the traps during the ice-covered period. These results suggest that plankton development is strongly inhibited by the ice-cover, with longer periods of ice-cover favouring Fragilaria species in Hagelseewli. The diatom analysis of a short sediment core that includes the last five centuries revealed several changes in the proportion of planktonic diatoms to Fragilaria species. The colder phases of the Little Ice-Age correspond to phases of lower concentration of planktonic diatoms. The highest, statistically significant amount of variance in the downcore diatom data is explained by winter precipitation, which directly influences the length of the ice-cover but inversely influences the light regime.


In: The Diatoms: Applications for the Environmental and Earth Sciences, Second Edition. (pp. 98-121). (2010) | 2010

Diatoms as indicators of surface-water acidity

Richard W. Battarbee; Donald F. Charles; Christian Bigler; Brian F. Cumming; Ingemar Renberg

Lake acidification became an environmental issue of international significance in the late 1960s and early 1970s when Scandinavian scientists claimed that ‘acid rain’ was the principal reason why fish populations had declined dramatically in Swedish and Norwegian lakes (Oden, 1968; Jensen & Snekvik, 1972; Almer et al., 1974). Similar claims were being made at about the same time in Canada (Beamish & Harvey, 1972). However, these claims were not immediately accepted by all scientists. It was argued instead that acidification was due to natural factors or to changes in catchment land-use and management (Rosenqvist 1977, 1978; Pennington 1984; Krug & Frink, 1983). In the scientific debate that followed, diatom analysis played a pivotal role. It enabled the timing and extent of lake acidification to be reconstructed (Charles et al., 1989; Battarbee et al., 1990; Dixit et al., 1992a) and allowed the various competing hypotheses concerning the causes of lake acidification to be evaluated (Battarbee et al., 1985; Battarbee & Charles 1994; Emmett et al., 1994). However, diatoms had been recognized and used as indicators of water pH well before the beginning of this controversy. The ‘acid rain’ issue served to highlight the importance of diatoms and stimulated the advance of more robust and sophisticated techniques, especially the development of transfer functions for reconstructing lakewater pH and related hydrochemical variables. This chapter outlines the history of diatoms as pH indicators, and describes how diatoms are currently used in studies of acid and acidified waters.


Aquatic Sciences | 2006

Distribution of diatoms, chironomids and cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland

Christian Bigler; Oliver Heiri; Renata Kršková; André F. Lotter; Michael Sturm

Abstract.Surface sediments from 30 mountain lakes in south-eastern Switzerland (Engadine, Grisons) were analysed for subfossil diatom, chironomid, and cladoceran assemblages. Ordination techniques were used to identify relevant physical and chemical environmental parameters that best explain the distribution of these biota in the studied lakes. Diatom assemblage composition showed a strong relationship with physical (e.g., lake depth, temperature, organic content of surface sediments) and chemical variables (e.g., lake-water pH, alkalinity, silica concentration). The greatest variance in chironomid and cladoceran assemblages is explained by dissolved organic carbon (DOC) content of lake water, temperature, and the organic content of surface sediments, all parameters which are highly correlated with lake elevation. Increasing lake depth is reflected in diatom and cladoceran assemblages by higher percentages of planktonic species, whereas chironomid assemblages in the deep Engadine lakes are characterised by a high proportion of lotic taxa. In contrast to similar studies in the Northern and Southern Alps, subfossil assemblages in the Engadine mountain lakes showed a strong relationship with DOC, which in these weakly buffered lakes is negatively correlated with altitude. According to our findings, chironomid and cladocera remains have a considerable potential as quantitative palaeotemperature indicators in the Engadine area. This potential is somewhat weaker for diatoms which seem to be more strongly influenced by water chemistry and lake bathymetry.


Journal of Paleolimnology | 2002

Diatoms as indicators of climatic and limnological change in Swedish Lapland: A 100-lake calibration set and its validation for paleoecological reconstructions

Christian Bigler; Roland I. Hall

This study investigated the distribution of subfossil diatom assemblages in surficial sediments of 100 lakes along steep ecological and climatic gradients in northernmost Sweden (Abisko region, 67.07° N to 68.48° N latitude, 17.67° E to 23.52° E longitude) to develop and cross-validate transfer functions for paleoenvironmental reconstruction. Of 19 environmental variables determined for each site, 15 were included in the statistical analysis. Lake-water pH (8.0%), sedimentary loss-on-ignition (LOI, 5.9% and estimated mean July air temperature (July T, 4.8%) explained the greatest amounts of variation in the distribution of diatom taxa among the 100 lakes. Temperature and pH optima and tolerances were calculated for abundant taxa. Transfer functions, based on WA-PLS (weighted averaging partial least squares), were developed for pH (r2 = 0.77, root-mean-square-error of prediction (RMSEP) = 0.19 pH units, maximum bias = 0.31, as assessed by leave-one-out cross-validation) based on 99 lakes and for July T (r2 = 0.75, RMSEP = 0.96 °C, max. bias = 1.37 °C) based on the full 100 lake set. We subsequently assessed the ability of the diatom transfer functions to estimate lake-water pH and July T using a form of independent cross-validation. To do this, the 100-lake set was divided in two subsets. An 85-lake training-set (based on single limnological measurements) was used to develop transfer functions with similar performance as those based on the full 100 lakes, and a 15-lake test-set (with 2 years of monthly limnological measurements throughout the ice-free seasons) was used to test the transfer functions developed from the 85-lake training-set. Results from the intra-set cross-validation exercise demonstrated that lake-specific prediction errors (RMSEP) for the 15-lake test-set corresponded closely with the median measured values (pH) and the estimations based on spatial interpolations of data from weather stations (July T). The prediction errors associated with diatom inferences were usually within the range of seasonal and interannual variability. Overall, our results confirm that diatoms can provide reliable and robust estimates of lake-water pH and July T, that WA-PLS is a robust calibration method and that long-term environmental data are needed for further improvement of paleolimnological transfer functions.


The Holocene | 2001

Holocene climatic change in Swedish Lapland inferred from an oxygen-isotope record of lacustrine biogenic silica

Aldo Shemesh; Gunhild Rosqvist; Miri Rietti-Shati; Lena Rubensdotter; Christian Bigler; Ruth Yam; Wibjörn Karlén

Holocene climatic variability was studied in a 9500-year lake-sediment sequence from the Abisko region in Swedish Lapland, using the oxygen-isotope ratio in diatom biogenic silica (d18Osi). Oxygen-and hydrogen-isotope ratios of waters from the Abisko area suggest that in this region the evaporative flux is small and the isotopic composition of most lakes reflects that of the local precipitation. The hydrological setting of the region and sensitivity analysis of isotopic response to changing climatic parameters such as humidity, inflow and evaporation show that the downcore diatom d18Osi record is primarily controlled by changes in the summer isotopic composition of the lake water. The overall 3.5‰ depletion in d18Osi since the early Holocene is interpreted as an increase in the influence of the Arctic polar continental air mass that carries depleted precipitation. We estimate that this change is associated with a 2.5–4°C cooling that has occurred since the early Holocene. In general, the diatom d18Osi record resembles the average annual air temperature reconstructed for the Greenland ice core GISP2, especially during the past 4000 years, with a pronounced cooling starting at 2000 years BP.


Journal of Paleolimnology | 2003

Holocene environmental change at Lake Njulla (999 m asl), northern Sweden : a comparison with four small nearby lakes along an altitudinal gradient

Christian Bigler; Evastina Grahn; Isabelle Larocque; Adam Jeziorski; Roland I. Hall

We assess Holocene environmental change at alpine Lake Njulla(68°22′N, 18°42′E, 999 m a.s.l.) innorthernmost Sweden using sedimentary remains of chironomid head capsules anddiatoms. We apply regional calibration sets to quantitatively reconstruct meanJuly air temperature (using chironomids and diatoms) and lake-water pH(using diatoms). Both chironomids and diatoms infer highest temperatures(1.7–2.3°C above present-day estimates, includinga correction for glacio-isostatic land up-lift by0.6°C) during the early Holocene (c.9,500–8,500 cal. yrs BP). Diatoms suggest a decreasing lake-waterpH trend (c. 0.6 pH units) since the early Holocene. Usingdetrended canonical correspondence analysis (DCCA), we compare the Holocenedevelopment of diatom communities in Lake Njulla with four other nearby lakes(Lake 850, Lake Tibetanus, Vuoskkujávri, Vuolep Njakajaure) locatedalong an altitudinal gradient. All five lakes show similar initial DCCA scoresafter deglaciation, suggesting that similar environmental processes such ashigh erosion rates and low light availability associated with high summertemperature appear to have regulated the diatom community, favouring highabundances of Fragilaria species. Subsequently, the diatomassemblages develop in a directional manner, but timing and scale ofdevelopment differ substantially between lakes. This is attributed primarily todifferences in the local geology, which is controlling the lake-waterpH. Imposed on the basic geological setting, site-specific processessuch as vegetation development, climate, hydrological setting andin-lake processes appear to control lake development in northernSweden.


Palaeogeography, Palaeoclimatology, Palaeoecology | 2003

Diatoms as quantitative indicators of July temperature: a validation attempt at century-scale with meteorological data from northern Sweden

Christian Bigler; Roland I. Hall

Diatoms as quantitative indicators of July temperature: a century-scale validation with meteorological data from northern Sweden


Ecology | 2008

A 700-YEAR PALEOECOLOGICAL RECORD OF BOREAL ECOSYSTEM RESPONSES TO CLIMATIC VARIATION FROM ALASKA

Willy Tinner; Christian Bigler; Sharon Gedye; Irene Gregory-Eaves; Richard T. Jones; Petra Kaltenrieder; Urs Krähenbühl; Feng Sheng Hu

Recent observations and model simulations have highlighted the sensitivity of the forest-tundra ecotone to climatic forcing. In contrast, paleoecological studies have not provided evidence of tree-line fluctuations in response to Holocene climatic changes in Alaska, suggesting that the forest-tundra boundary in certain areas may be relatively stable at multicentennial to millennial time scales. We conducted a multiproxy study of sediment cores from an Alaskan lake near the altitudinal limits of key boreal-forest species. Paleoecological data were compared with independent climatic reconstructions to assess ecosystem responses of the forest tundra boundary to Little Ice Age (LIA) climatic fluctuations. Pollen, diatom, charcoal, macrofossil, and magnetic analyses provide the first continuous record of vegetation fire-climate interactions at decadal to centennial time scales during the past 700 years from southern Alaska. Boreal-forest diebacks characterized by declines of Picea mariana, P. glauca, and tree Betula occurred during the LIA (AD 1500-1800), whereas shrubs (Alnus viridis, Betula glandulosa/nana) and herbaceous taxa (Epilobium, Aconitum) expanded. Marked increases in charcoal abundance and changes in magnetic properties suggest increases in fire importance and soil erosion during the same period. In addition, the conspicuous reduction or disappearance of certain aquatic (e.g., Isoetes, Nuphar, Pediastrum) and wetland (Sphagnum) plants and major shifts in diatom assemblages suggest pronounced lake-level fluctuations and rapid ecosystem reorganization in response to LIA climatic deterioration. Our results imply that temperature shifts of 1-2 degrees C, when accompanied by major changes in moisture balance, can greatly alter high-altitudinal terrestrial, wetland, and aquatic ecosystems, including conversion between boreal-forest tree line and tundra. The climatic and ecosystem variations in our study area appear to be coherent with changes in solar irradiance, suggesting that changes in solar activity contributed to the environmental instability of the past 700 years.


Journal of Applied Phycology | 2009

Harmonization is more important than experience—results of the first Nordic–Baltic diatom intercalibration exercise 2007 (stream monitoring)

Maria Kahlert; Raino-Lars Albert; Eeva-Leena Anttila; Roland Bengtsson; Christian Bigler; Tiina Eskola; Veronika Gälman; Steffi Gottschalk; Eva Herlitz; Amelie Jarlman; Jurate Kasperoviciene; Mikołaj Kokociński; Helen Luup; Juha Miettinen; Ieva Paunksnyte; Kai Piirsoo; Isabel Quintana; Janne Raunio; Bernt Sandell; Heikki Simola; Iréne Sundberg; Sirje Vilbaste; Jan Weckström

The goal of this study was a harmonization of diatom identification and counting among diatomists from the Scandinavian and Baltic countries to improve the comparison of diatom studies in this geographical area. An analysis of the results of 25 diatomists following the European standard EN 14407 during an intercalibration exercise showed that a high similarity was achieved by harmonization and not because of a long experience with diatoms. Sources of error were wrong calibration scales, overlooking of small taxa, especially small Navicula s.l., misidentifications (Eunotia rhomboidea was mistaken for Eunotia incisa) and unclear separation between certain taxa in the identification literature. The latter was discussed during a workshop with focus on the Achnanthes minutissima group, the separation of Fragilaria capucina var. gracilis from F. capucina var. rumpens, and Nitzschia palea var. palea from N. palea var. debilis. The exercise showed also that the Swedish standard diatom method tested here worked fine with acceptable error for the indices IPS (Indice de Polluo-sensibilité Spécifique) and ACID (ACidity Index for Diatoms) when diatomists with a low similarity (Bray–Curtis <60%) with the auditor in at least one of the samples are excluded.


The Holocene | 2007

Quantifying human-induced eutrophication in Swiss mountain lakes since AD 1800 using diatoms

Christian Bigler; Lucien von Gunten; André F. Lotter; Sonja Hausmann; Alexander Blass; Christian Ohlendorf; Michael Sturm

Sedimentary diatom assemblages from three lakes in the southeastern Swiss Alps were analysed at high temporal resolution since AD 1800. Altered land-use patterns, increasing population and exploitation through tourism are clearly reflected in annually laminated sediments of Lej da San Murezzan (Lake St Moritz) and Lej da Silvaplauna (Lake Silvaplana). Diatom assemblages originally dominated by Cyclotella taxa are replaced by taxa indicating higher total phosphorus (TP) concentrations, such as Asterionella formosa, Fragilaria crotonensis and Stephanodiscus parvus. In Lej da la Tscheppa, located well above the treeline in a catchment that was hardly exposed to human impact, Cyclotella comensis prevails throughout the entire sediment sequence. Quantitative estimates of past TP concentrations were inferred using a newly developed regional diatom-TP inference model based on 119 modern samples. In Lej da la Tscheppa diatoms imply stable, low TP concentrations (~10 µg/l), which can be considered as natural background concentration. Elevated TP levels are inferred for Lej da San Murezzan (max. 60 µg/l) since AD 1910 and for Lej da Silvaplauna (max. 40 µg/l) since AD 1950, corroborated by changes in sedimentary biogenic silica concentration and organic carbon content. Since ~AD 1970 improved waste water management led to a considerable reduction in TP loading in Lej da Silvaplauna and Lej da San Murezzan.

Collaboration


Dive into the Christian Bigler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melanie J. Leng

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Sturm

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge