Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Böhm is active.

Publication


Featured researches published by Christian Böhm.


ACM Computing Surveys | 2001

Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases

Christian Böhm; Stefan Berchtold; Daniel A. Keim

During the last decade, multimedia databases have become increasingly important in many application areas such as medicine, CAD, geography, and molecular biology. An important research issue in the field of multimedia databases is the content-based retrieval of similar multimedia objects such as images, text, and videos. However, in contrast to searching data in a relational database, a content-based retrieval requires the search of similar objects as a basic functionality of the database system. Most of the approaches addressing similarity search use a so-called feature transformation that transforms important properties of the multimedia objects into high-dimensional points (feature vectors). Thus, the similarity search is transformed into a search of points in the feature space that are close to a given query point in the high-dimensional feature space. Query processing in high-dimensional spaces has therefore been a very active research area over the last few years. A number of new index structures and algorithms have been proposed. It has been shown that the new index structures considerably improve the performance in querying large multimedia databases. Based on recent tutorials [Berchtold and Keim 1998], in this survey we provide an overview of the current state of the art in querying multimedia databases, describing the index structures and algorithms for an efficient query processing in high-dimensional spaces. We identify the problems of processing queries in high-dimensional space, and we provide an overview of the proposed approaches to overcome these problems.


international conference on management of data | 1998

The pyramid-technique: towards breaking the curse of dimensionality

Stefan Berchtold; Christian Böhm; Hans-Peter Kriegal

In this paper, we propose the Pyramid-Technique, a new indexing method for high-dimensional data spaces. The Pyramid-Technique is highly adapted to range query processing using the maximum metric Lmax. In contrast to all other index structures, the performance of the Pyramid-Technique does not deteriorate when processing range queries on data of higher dimensionality. The Pyramid-Technique is based on a special partitioning strategy which is optimized for high-dimensional data. The basic idea is to divide the data space first into 2d pyramids sharing the center point of the space as a top. In a second step, the single pyramids are cut into slices parallel to the basis of the pyramid. These slices from the data pages. Furthermore, we show that this partition provides a mapping from the given d-dimensional space to a 1-dimensional space. Therefore, we are able to use a B+-tree to manage the transformed data. As an analytical evaluation of our technique for hypercube range queries and uniform data distribution shows, the Pyramid-Technique clearly outperforms index structures using other partitioning strategies. To demonstrate the practical relevance of our technique, we experimentally compared the Pyramid-Technique with the X-tree, the Hilbert R-tree, and the Linear Scan. The results of our experiments using both, synthetic and real data, demonstrate that the Pyramid-Technique outperforms the X-tree and the Hilbert R-tree by a factor of up to 14 (number of page accesses) and up to 2500 (total elapsed time) for range queries.


symposium on principles of database systems | 1997

A cost model for nearest neighbor search in high-dimensional data space

Stefan Berchtold; Christian Böhm; Daniel A. Keim; Hans-Peter Kriegel

In this paper, we present a new cost model for nearest neighbor search in high-dimensional data space. We first analyze different nearest neighbor algorithms, present a generalization of an algorithm which has been originally proposed for Quadtrees [13], and show that this algorithm is optimal. Then, we develop a cost model which - in contrast to previous models - takes boundary effects into account and therefore also works in high dimensions. The advantages of our model are in particular: Our model works for data sets with an arbitrary number of dimensions and an arbitrary number of data points, is applicable to different data distributions and index structures, and provides accurate estimates of the expected query execution time. To show the practical relevance and accuracy of our model, we perform a detailed analysis using synthetic and real data. The results of applying our model to Hilbert and X-tree indices show that it provides a good estimation of the query performance, which is considerably better than the estimates by previous models especially for highdimensional data.


international conference on management of data | 1997

Fast parallel similarity search in multimedia databases

Stefan Berchtold; Christian Böhm; Bernhard Braunmüller; Daniel A. Keim; Hans-Peter Kriegel

Most similarity search techniques map the data objects into some high-dimensional feature space. The similarity search then corresponds to a nearest-neighbor search in the feature space which is computationally very intensive. In this paper, we present a new parallel method for fast nearest-neighbor search in high-dimensional feature spaces. The core problem of designing a parallel nearest-neighbor algorithm is to find an adequate distribution of the data onto the disks. Unfortunately, the known declustering methods to not perform well for high-dimensional nearest-neighbor search. In contrast, our method has been optimized based on the special properties of high-dimensional spaces and therefore provides a near-optimal distribution of the data items among the disks. The basic idea of our data declustering technique is to assign the buckets corresponding to different quadrants of the data space to different disks. We show that our technique - in contrast to other declustering methods - guarantees that all buckets corresponding to neighboring quadrants are assigned to different disks. We evaluate our method using large amounts of real data (up to 40 MBytes) and compare it with the best known data declustering method, the Hilbert curve. Our experiments show that our method provides an almost linear speed-up and a constant scale-up. Additionally, it outperforms the Hilbert approach by a factor of up to 5.


NeuroImage | 2010

Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease

Claudia Plant; Stefan J. Teipel; Annahita Oswald; Christian Böhm; Thomas Meindl; Janaina Mourão-Miranda; Arun W. Bokde; Harald Hampel; Michael Ewers

Subjects with mild cognitive impairment (MCI) have an increased risk to develop Alzheimers disease (AD). Voxel-based MRI studies have demonstrated that widely distributed cortical and subcortical brain areas show atrophic changes in MCI, preceding the onset of AD-type dementia. Here we developed a novel data mining framework in combination with three different classifiers including support vector machine (SVM), Bayes statistics, and voting feature intervals (VFI) to derive a quantitative index of pattern matching for the prediction of the conversion from MCI to AD. MRI was collected in 32 AD patients, 24 MCI subjects and 18 healthy controls (HC). Nine out of 24 MCI subjects converted to AD after an average follow-up interval of 2.5 years. Using feature selection algorithms, brain regions showing the highest accuracy for the discrimination between AD and HC were identified, reaching a classification accuracy of up to 92%. The extracted AD clusters were used as a search region to extract those brain areas that are predictive of conversion to AD within MCI subjects. The most predictive brain areas included the anterior cingulate gyrus and orbitofrontal cortex. The best prediction accuracy, which was cross-validated via train-and-test, was 75% for the prediction of the conversion from MCI to AD. The present results suggest that novel multivariate methods of pattern matching reach a clinically relevant accuracy for the a priori prediction of the progression from MCI to AD.


international conference on management of data | 2004

Computing Clusters of Correlation Connected objects

Christian Böhm; Karin Kailing; Peer Kröger; Arthur Zimek

The detection of correlations between different features in a set of feature vectors is a very important data mining task because correlation indicates a dependency between the features or some association of cause and effect between them. This association can be arbitrarily complex, i.e. one or more features might be dependent from a combination of several other features. Well-known methods like the principal components analysis (PCA) can perfectly find correlations which are global, linear, not hidden in a set of noise vectors, and uniform, i.e. the same type of correlation is exhibited in all feature vectors. In many applications such as medical diagnosis, molecular biology, time sequences, or electronic commerce, however, correlations are not global since the dependency between features can be different in different subgroups of the set. In this paper, we propose a method called 4C (Computing Correlation Connected Clusters) to identify local subgroups of the data objects sharing a uniform but arbitrarily complex correlation. Our algorithm is based on a combination of PCA and density-based clustering (DBSCAN). Our method has a determinate result and is robust against noise. A broad comparative evaluation demonstrates the superior performance of 4C over competing methods such as DBSCAN, CLIQUE and ORCLUS.


international conference on data mining | 2004

Density connected clustering with local subspace preferences

Christian Böhm; K. Railing; Hans-Peter Kriegel; Peer Kröger

Many clustering algorithms tend to break down in high-dimensional feature spaces, because the clusters often exist only in specific subspaces (attribute subsets) of the original feature space. Therefore, the task of projected clustering (or subspace clustering) has been defined recently. As a solution to tackle this problem, we propose the concept of local subspace preferences, which captures the main directions of high point density. Using this concept, we adopt density-based clustering to cope with high-dimensional data. In particular, we achieve the following advantages over existing approaches: Our proposed method has a determinate result, does not depend on the order of processing, is robust against noise, performs only one single scan over the database, and is linear in the number of dimensions. A broad experimental evaluation shows that our approach yields results of significantly better quality than recent work on clustering high-dimensional data.


ACM Transactions on Database Systems | 2000

A cost model for query processing in high dimensional data spaces

Christian Böhm

During the last decade, multimedia databases have become increasingly important in many application areas such as medicine, CAD, geography, and molecular biology. An important research topic in multimedia databases is similarity search in large data sets. Most current approaches that address similarity search use the feature approach, which transforms important properties of the stored objects into points of a high-dimensional space (feature vectors). Thus, similarity search is transformed into a neighborhood search in feature space. Multidimensional index structures are usually applied when managing feature vectors. Query processing can be improved substantially with optimization techniques such as blocksize optimization, data space quantization, and dimension reduction. To determine optimal parameters, an accurate estimate of index-based query processing performance is crucial. In this paper we develop a cost model for index structures for point databases such as the R*-tree and the X-tree. It provides accurate estimates of the number of data page accesses for range queries and nearest-neighbor queries under a Euclidean metric and a maximum metric and a maximum metric. The problems specific to high-dimensional data spaces, called boundary effects, are considered. The concept of the fractal dimension is used to take the effects of correlated data into account.During the last decade, multimedia databases have become increasingly important in many application areas such as medicine, CAD, geography, and molecular biology. An important research topic in multimedia databases is similarity search in large data sets. Most current approaches that address similarity search use the feature approach, which transforms important properties of the stored objects into points of a high-dimensional space (feature vectors). Thus, similarity search is transformed into a neighborhood search in feature space. Multidimensional index structures are usually applied when managing feature vectors. Query processing can be improved substantially with optimization techniques such as blocksize optimization, data space quantization, and dimension reduction. To determine optimal parameters, an accurate estimate of index-based query processing performance is crucial. In this paper we develop a cost model for index structures for point databases such as the R*-tree and the X-tree. It provides accurate estimates of the number of data page accesses for range queries and nearest-neighbor queries under a Euclidean metric and a maximum metric and a maximum metric. The problems specific to high-dimensional data spaces, called boundary effects, are considered. The concept of the fractal dimension is used to take the effects of correlated data into account.


international conference on management of data | 2006

Efficient reverse k-nearest neighbor search in arbitrary metric spaces

Elke Achtert; Christian Böhm; Peer Kröger; Peter Kunath; Alexey Pryakhin; Matthias Renz

The reverse k-nearest neighbor (RkNN) problem, i.e. finding all objects in a data set the k-nearest neighbors of which include a specified query object, is a generalization of the reverse 1-nearest neighbor problem which has received increasing attention recently. Many industrial and scientific applications call for solutions of the RkNN problem in arbitrary metric spaces where the data objects are not Euclidean and only a metric distance function is given for specifying object similarity. Usually, these applications need a solution for the generalized problem where the value of k is not known in advance and may change from query to query. However, existing approaches, except one, are designed for the specific R1NN problem. In addition - to the best of our knowledge - all previously proposed methods, especially the one for generalized RkNN search, are only applicable to Euclidean vector data but not for general metric objects. In this paper, we propose the first approach for efficient RkNN search in arbitrary metric spaces where the value of k is specified at query time. Our approach uses the advantages of existing metric index structures but proposes to use conservative and progressive distance approximations in order to filter out true drops and true hits. In particular, we approximate the k-nearest neighbor distance for each data object by upper and lower bounds using two functions of only two parameters each. Thus, our method does not generate any considerable storage overhead. We show in a broad experimental evaluation on real-world data the scalability and the usability of our novel approach.


international conference on data engineering | 2006

The Gauss-Tree: Efficient Object Identification in Databases of Probabilistic Feature Vectors

Christian Böhm; Alexey Pryakhin; Matthias Schubert

In applications of biometric databases the typical task is to identify individuals according to features which are not exactly known. Reasons for this inexactness are varying measuring techniques or environmental circumstances. Since these circumstances are not necessarily the same when determining the features for different individuals, the exactness might strongly vary between the individuals as well as between the features. To identify individuals, similarity search on feature vectors is applicable, but even the use of adaptable distance measures is not capable to handle objects having an individual level of exactness. Therefore, we develop a comprehensive probabilistic theory in which uncertain observations are modeled by probabilistic feature vectors (pfv), i.e. feature vectors where the conventional feature values are replaced by Gaussian probability distribution functions. Each feature value of each object is complemented by a variance value indicating its uncertainty. We define two types of identification queries, k-mostlikely identification and threshold identification. For efficient query processing, we propose a novel index structure, the Gauss-tree. Our experimental evaluation demonstrates that pfv stored in a Gauss-tree significantly improve the result quality compared to traditional feature vectors. Additionally, we show that the Gauss-tree significantly speeds up query times compared to competitive methods.

Collaboration


Dive into the Christian Böhm's collaboration.

Top Co-Authors

Avatar

Claudia Plant

Technische Universität München

View shared research outputs
Top Co-Authors

Avatar

Junming Shao

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qinli Yang

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Christian Baumgartner

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sami Khuri

San Jose State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge