Christian Brekken
Norwegian University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Brekken.
Cancer Research | 2004
Live Eikenes; Øyvind S. Bruland; Christian Brekken; Catharina de Lange Davies
Cancer therapy based on tumor-selective macromolecules may fail due to the elevated interstitial fluid pressure (IFP) that reduces the transvascular and interstitial convection in solid tumors. Modulation of the tumor extracellular matrix (ECM) may reduce IFP and enhance transvascular filtration and interstitial transport of macromolecules. We therefore measured the effect of the ECM-degrading enzyme collagenase on IFP and microvascular pressure (MVP) in human osteosarcoma xenografts using the wick-in-needle and micropipette methods, respectively. The tumor uptake and distribution of a systemically administered osteosarcoma-associated monoclonal antibody (TP-3) after i.v. injection of collagenase were analyzed using confocal laser scanning microscopy. Collagenase (0.1%) reduced both IFP (45%) and MVP (60%), but the kinetics of the recoveries differed, because MVP had recovered by the time IFP reached its minimum level. Thus, collagenase increased the transcapillary pressure gradient, inducing a 2-fold increase in the tumor uptake and improving the distribution of the monoclonal antibody, which was localized further into the tumor. To study the mechanism of the reduction in MVP, mean arterial blood pressure was measured and found not to be affected by the collagenase treatment. The reduction in MVP was rather due to reduced vascular resistance because microvascular-associated collagen was totally or partially disintegrated. Although collagenase may favor metastasis and thus not be clinically relevant, this study shows proof of principle that degradation of the ECM leads to a favorable change in the transvascular pressure gradient, thereby increasing antibody penetration and binding to tumor cells.
Cancer Research | 2004
Catharina de Lange Davies; Lisa M. Lundstrøm; Jomar Frengen; Live Eikenes; Øyvind S. Bruland; Olav Kaalhus; Mari Hjelstuen; Christian Brekken
Liposomal drug delivery appears to improve the antitumor effect and reduce toxicity compared with the free drug. The therapeutic index may be improved further by combining cytotoxic drugs and radiotherapy. Successful therapy requires that the cytotoxic agents reach the tumor cells. Therefore, we studied tumor growth and the microdistribution of liposomal doxorubicin (Caelyx) with and without additional ionizing radiation in human osteosarcoma xenografts in athymic mice. Caelyx was injected i.v. 1 day before single or fractionated radiotherapy. Both chemoirradiation regimens induced significant tumor growth delays and worked synergistically. Confocal laser scanning microscopy showed that intact liposomes were located in close proximity to endothelial cells, and the distribution of released doxorubicin was heterogeneous. Before radiotherapy, hardly any doxorubicin was localized in the central parts of the tumor. Radiotherapy increased the tumor uptake of doxorubicin by a factor of two to four, with drug being redistributed farther from the vessels in the tumor periphery and located around vessels in the central parts of the tumor. Colocalization of doxorubicin and hypoxic cells showed no distribution of drug into hypoxic areas. Dynamic contrast-enhanced magnetic resonance imaging (MRI) 1 day before the injection of Caelyx and 2 days after treatment start showed that the combined treatment reduced the vascular volume and the vascular transfer rate of the MRI tracer. The results show that chemoirradiation with Caelyx induces synergistic treatment effects. Improved intratumoral drug uptake and distribution are responsible to some extent for the enhanced antitumor effect.
Journal of Magnetic Resonance Imaging | 2005
Marte Thuen; Trond E. Singstad; Tina Bugge Pedersen; Olav Haraldseth; Martin Berry; Axel Sandvig; Christian Brekken
To evaluate manganese (Mn2+)‐enhanced MRI in a longitudinal study of normal and injured rat visual projections.
British Journal of Cancer | 1998
Yves Boucher; Christian Brekken; Paolo A. Netti; Laurence T. Baxter; Rakesh K. Jain
We have developed a new technique to measure in vivo tumour tissue fluid transport parameters (hydraulic conductivity and compliance) that influence the systemic and intratumoral delivery of therapeutic agents. An infusion needle approximating a point source was constructed to produce a radially symmetrical fluid source in the centre of human tumours in immunodeficient mice. At constant flow, the pressure gradient generated in the tumour by the infusion of fluid (Evans blue-albumin in saline) was measured as a function of the radial position with micropipettes connected to a servo-null system. To evaluate whether the fluid infused was reabsorbed by blood vessels, infusions were also performed after circulatory arrest. In the colon adenocarcinoma LS174T with a spherically symmetrical distribution of Evans blue-albumin, the median hydraulic conductivity in vivo and after circulatory arrest at a flow rate of 0.1 microl min(-1) was, respectively, 1.7x10(-7) and 2.3x10(-7) cm2 mmHg(-1) s. Compliance estimates were 35 microl mmHg(-1) in vivo, and 100 microl mmHg(-1) after circulatory arrest. In the sarcoma HSTS 26T, hydraulic conductivity and compliance were not calculated because of the asymmetric distribution of the fluid infused. The technique will be helpful in identifying strategies to improve the intratumoral and systemic delivery of gene targeting vectors and other therapeutic agents.
Journal of Magnetic Resonance Imaging | 2008
Marte Thuen; Martin Berry; Tina Bugge Pedersen; Pål Erik Goa; Mike Summerfield; Olav Haraldseth; Axel Sandvig; Christian Brekken
To provide dose‐response data for the safe and effective use of MnCl2 for manganese (Mn2+) ‐enhanced MRI (MEMRI) of the visual pathway.
Journal of Magnetic Resonance Imaging | 2009
Marte Thuen; Øystein Olsen; Martin Berry; Tina Bugge Pedersen; Anders Kristoffersen; Olav Haraldseth; Axel Sandvig; Christian Brekken
To evaluate manganese (Mn2+)‐enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) as tools for detection of axonal injury and regeneration after intravitreal peripheral nerve graft (PNG) implantation in the rat optic nerve (ON).
Cancer Letters | 1998
Christian Brekken; Catharina de Lange Davies
Hyaluronidase has gained increasing interest as an adjuvant in local and systemic cancer therapy, despite the incomplete knowledge of its physiological function. To this end, direct intratumoral injection of bovine testicular hyaluronidase (500, 1600 or 7500 U in 50 microl phosphate-buffered saline (PBS)) was performed in orthotopic (o.t.) osteosarcoma xenografts grown in the hind leg of nude mice. Control tumours received 50 microl PBS alone or supplemented with 10% bovine serum albumin (BSA). Central tumour interstitial fluid pressure (IFP) and mean arterial blood pressure (MABP) were measured using the wick-in-needle technique and after cannulation of the carotid artery, respectively. IFP was 32 +/- 8 mmHg (n = 44, mean +/- SD) in untreated tumours and there was a significant correlation between tumour IFP and volume (P < 0.01). The hyaluronidase injection reduced IFP to 63-84% after 1 h compared with controls (P < 0.05) and in a non-linear concentration-dependent manner. MABP was not affected significantly. In conclusion, an intratumoral hyaluronidase injection might reduce IFP temporally in solid osteosarcoma xenografts.
NeuroImage | 2006
C. Brekke; Arvid Lundervold; Per Øyvind Enger; Christian Brekken; E. Stålsett; Tina Bugge Pedersen; Olav Haraldseth; P.G. Krüger; Rolf Bjerkvig; Martha Chekenya
Tumour angiogenesis is a tightly regulated process involving cross-talk between tumour cells and the host tissue. The underlying mechanisms that regulate such interactions remain largely unknown. NG2 is a transmembrane proteoglycan whose presence on transformed cells has been demonstrated to increase proliferation in vitro and angiogenesis in vivo. To study the effects of NG2 during tumour growth and progression, we engineered an NG2 positive human glioma cell line (U251-NG2) from parental NG2 negative cells (U251-WT) and implanted both cell types stereotactically into immunodeficient nude rat brains. The tumours were longitudinally monitored in vivo using multispectral MRI employing two differently sized contrast agents (Gd-DTPA-BMA and Gadomer) to assess vascular leakiness, vasogenic oedema, tumour volumes and necrosis. Comparisons of Gd-DTPA-BMA and Gadomer revealed differences in their spatial distribution in the U251-NG2 and U251-WT tumours. The U251-NG2 tumours exhibited a higher leakiness of the larger molecular weight Gadomer and displayed a stronger vasogenic oedema (69.9 +/- 15.2, P = 0.018, compared to the controls (10.7 +/- 7.7). Moreover, immunohistochemistry and electron microscopy revealed that the U251-NG2 tumours had a higher microvascular density (11.81 +/- 0.54; P = 0.0010) compared to controls (5.76 +/- 0.87), with vessels that displayed larger gaps between the endothelial cells. Thus, tumour cells can regulate both the function and structure of the host-derived tumour vasculature through NG2 expression, suggesting a role for NG2 in the cross-talk between tumour-host compartments.
NeuroImage | 2007
Silje Alvestad; Pål Erik Goa; Hong Qu; Øystein Risa; Christian Brekken; Ursula Sonnewald; Olav Haraldseth; Janniche Hammer; Ole Petter Ottersen; Asta Håberg
Mesial temporal lobe epilepsy is associated with structural and functional abnormalities, such as hippocampal sclerosis and axonal reorganization. The temporal evolution of these changes remains to be determined, and there is a need for in vivo imaging techniques that can uncover the epileptogenic processes at an early stage. Manganese-enhanced magnetic resonance imaging may be useful in this regard. The aim of this study was to analyze the temporospatial changes in manganese enhancement in rat brain during the development of epilepsy subsequent to systemic kainate application (10 mg/kg i.p.). MnCl(2) was given systemically on day 2 (early), day 15 (latent), and 11 weeks (chronic phase) after the initial status epilepticus. Twenty-four hours after MnCl(2) injection T1-weighted 3D MRI was performed followed by analysis of manganese enhancement. In the medial temporal lobes, there was a pronounced decrease in manganese enhancement in CA1, CA3, dentate gyrus, entorhinal cortex and lateral amygdala in the early phase. In the latent and chronic phases, recovery of the manganese enhancement was observed in all these structures except CA1. A significant increase in manganese enhancement was detected in the entorhinal cortex and the amygdala in the chronic phase. In the latter phase, the structurally intact cerebellum showed significantly decreased manganese enhancement. The highly differentiated changes in manganese enhancement are likely to represent the net outcome of a number of pathological and pathophysiological events, including cell loss and changes in neuronal activity. Our findings are not consistent with the idea that manganese enhancement primarily reflects changes in glial cells.
NeuroImage | 2009
Marius Widerøe; Øystein Olsen; Tina Bugge Pedersen; Pål Erik Goa; Annemieke Kavelaars; Cobi J. Heijnen; Jon Skranes; Ann-Mari Brubakk; Christian Brekken
Hypoxic-ischemic injury (HI) to the neonatal brain results in delayed neuronal death with accompanying inflammation for days after the initial insult. The aim of this study was to depict delayed neuronal death after HI using Manganese-enhanced MRI (MEMRI) and to evaluate the specificity of MEMRI in detection of cells related to injury by comparison with histology and immunohistochemistry. 7-day-old Wistar rat pups were subjected to HI (occlusion of right carotid artery and 8% O(2) for 75 min). 16 HI (HI+Mn) and 6 sham operated (Sham+Mn) pups were injected with MnCl(2) (100 mM, 40 mg/kg) and 10 HI-pups (HI+Vehicle) received NaCl i.p. 6 h after HI. 3D T(1)-weighted images (FLASH) and 2D T(2)-maps (MSME) were acquired at 7 T 1, 3 and 7 days after HI. Pups were sacrificed after MR-scanning and brain slices were cut and stained for CD68, GFAP, MAP-2, Caspase-3 and Fluorojade B. No increased manganese-enhancement (ME) was detectable in the injured hemisphere on day 1 or 3 when immunohistochemistry showed massive ongoing neuronal death. 7 days after HI, increased ME was seen on T(1)-w images in parts of the injured cortex, hippocampus and thalamus among HI+Mn pups, but not among HI+Vehicle or Sham+Mn pups. Comparison with immunohistochemistry showed delayed neuronal death and inflammation in these areas with late ME. Areas with increased ME corresponded best with areas with high concentrations of activated microglia. Thus, late manganese-enhancement seems to be related to accumulation of manganese in activated microglia in areas of neuronal death rather than depicting neuronal death per se.