Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Bressler is active.

Publication


Featured researches published by Christian Bressler.


Nature | 2014

Tracking excited-state charge and spin dynamics in iron coordination complexes

Wenkai Zhang; Roberto Alonso-Mori; Uwe Bergmann; Christian Bressler; Matthieu Chollet; Andreas Galler; Wojciech Gawelda; Ryan G. Hadt; Robert W. Hartsock; Thomas Kroll; Kasper Skov Kjær; K. Kubicek; Henrik T. Lemke; Huiyang W. Liang; Drew A. Meyer; Martin Meedom Nielsen; Carola Purser; Edward I. Solomon; Zheng Sun; Dimosthenis Sokaras; Tim Brandt van Driel; Gyoergy Vanko; Tsu-Chien Weng; Diling Zhu; Kelly J. Gaffney

Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons. But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics and the flux limitations of ultrafast X-ray sources. Such a situation exists for archetypal polypyridyl iron complexes, such as [Fe(2,2′-bipyridine)3]2+, where the excited-state charge and spin dynamics involved in the transition from a low- to a high-spin state (spin crossover) have long been a source of interest and controversy. Here we demonstrate that femtosecond resolution X-ray fluorescence spectroscopy, with its sensitivity to spin state, can elucidate the spin crossover dynamics of [Fe(2,2′-bipyridine)3]2+ on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate that these capabilities will make our method a valuable tool for mapping in unprecedented detail the fundamental electronic excited-state dynamics that underpin many useful light-triggered molecular phenomena involving 3d transition metal complexes.


Annual Review of Physical Chemistry | 2010

Molecular Structural Dynamics Probed by Ultrafast X-Ray Absorption Spectroscopy

Christian Bressler; Majed Chergui

The ability to visualize molecular structure in the course of a chemical reaction or a biological function has been a dream of scientists for decades. X-ray absorption spectroscopy (XAS) is ideal in this respect because it is chemically selective and can be implemented in any type of medium. Furthermore, using X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) in laser pump/X-ray probe experiments allows the retrieval of not only the local geometric structure of the system under study, but also the underlying electronic structure changes that drive the structural dynamics. We review recent developments in picosecond and femtosecond XAS applied to molecular systems in solution. Examples on ultrafast photoinduced processes such as intramolecular electron transfer, low-to-high spin change, and bond formation are presented.


Angewandte Chemie | 2009

Vibrational Coherences and Relaxation in the High‐Spin State of Aqueous [FeII(bpy)3]2+

Cristina Consani; Mirabelle Prémont-Schwarz; Amal ElNahhas; Christian Bressler; Frank van Mourik; Andrea Cannizzo; Majed Chergui

Dizzy cooling: Femtosecond excitation of the singlet states of aqueous [FeII(bpy)3]2+ (bpy=2,2-bipyridine) leads to the formation of a vibrationally hot quintet state that exhibits wave-packet dynamics arising from a chelate-ring and bending mode. The vibrational relaxation involves at least two modes: the FeN stretching mode (see picture) and the coherently excited chelate-ring and bending mode, which relax on different time scales.


Journal of Physical Chemistry A | 2012

Guest–host interactions investigated by time-resolved X-ray spectroscopies and scattering at MHz rates: Solvation dynamics and photoinduced spin transition in aqueous Fe(bipy)3 2+

Kristoffer Haldrup; György Vankó; Wojciech Gawelda; Andreas Galler; Gilles Doumy; Anne Marie March; E. P. Kanter; Amélie Bordage; Asmus Ougaard Dohn; T. B. van Driel; Kasper S. Kjaer; Henrik T. Lemke; Sophie E. Canton; Jens Uhlig; Villy Sundström; Linda Young; Stephen H. Southworth; Martin Meedom Nielsen; Christian Bressler

We have studied the photoinduced low spin (LS) to high spin (HS) conversion of [Fe(bipy)(3)](2+) in aqueous solution. In a laser pump/X-ray probe synchrotron setup permitting simultaneous, time-resolved X-ray diffuse scattering (XDS) and X-ray spectroscopic measurements at a 3.26 MHz repetition rate, we observed the interplay between intramolecular dynamics and the intermolecular caging solvent response with better than 100 ps time resolution. On this time scale, the initial ultrafast spin transition and the associated intramolecular geometric structure changes are long completed, as is the solvent heating due to the initial energy dissipation from the excited HS molecule. Combining information from X-ray emission spectroscopy and scattering, the excitation fraction as well as the temperature and density changes of the solvent can be closely followed on the subnanosecond time scale of the HS lifetime, allowing the detection of an ultrafast change in bulk solvent density. An analysis approach directly utilizing the spectroscopic data in the XDS analysis effectively reduces the number of free parameters, and both combined permit extraction of information about the ultrafast structural dynamics of the caging solvent, in particular, a decrease in the number of water molecules in the first solvation shell is inferred, as predicted by recent theoretical work.


Angewandte Chemie | 2009

Structural Determination of a Photochemically Active Diplatinum Molecule by Time‐Resolved EXAFS Spectroscopy

Renske M. van der Veen; C. J. Milne; Amal El Nahhas; Frederico A. Lima; Van Thai Pham; Jonathan Best; Julia A. Weinstein; C.N. Borca; Rafael Abela; Christian Bressler; Majed Chergui

Metallica: A large contraction of the Pt-Pt bond in the triplet excited state of the photoreactive [Pt(2)(P(2)O(5)H(2))(4)](4-) ion is determined by time-resolved X-ray absorption spectroscopy (see picture). The strengthening of the Pt-Pt interaction is accompanied by a weakening of the ligand coordination bonds, resulting in an elongation of the platinum-ligand bond that is determined for the first time.


Review of Scientific Instruments | 2004

A setup for ultrafast time-resolved x-ray absorption spectroscopy

Melanie Saes; Frank van Mourik; Wojciech Gawelda; Maik Kaiser; Majed Chergui; Christian Bressler; Daniel Grolimund; Rafael Abela; T. E. Glover; Philip A. Heimann; Robert W. Schoenlein; Steven L. Johnson; Aaron M. Lindenberg; R. W. Falcone

We present a setup which allows the measurement of time-resolved x-ray absorption spectra with picosecond temporal resolution on liquid samples at the Advanced Light Source at Lawrence Berkeley National Laboratories. The temporal resolution is limited by the pulse width of the synchrotron source. We characterize the different sources of noise that limit the experiment and present a single-pulse detection scheme.


Nature Communications | 2015

Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses.

Sophie E. Canton; Kasper Skov Kjær; György Vankó; Tim Brandt van Driel; Shin-ichi Adachi; Amélie Bordage; Christian Bressler; Pavel Chabera; Morten Christensen; Asmus Ougaard Dohn; Andreas Galler; Wojciech Gawelda; David J. Gosztola; Kristoffer Haldrup; Tobias Harlang; Yizhu Liu; Klaus B. Møller; Zoltán Németh; Shunsuke Nozawa; Mátyás Pápai; Tokushi Sato; Takahiro Sato; Karina Suarez-Alcantara; Tadashi Togashi; Kensuke Tono; Jens Uhlig; Dimali A. Vithanage; Kenneth Wärnmark; Makina Yabashi; Jianxin Zhang

Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.


Zeitschrift Fur Kristallographie | 2008

Exploiting EXAFS and XANES for time-resolved molecular structures in liquids

Christian Bressler; Rafael Abela; Majed Chergui

Abstract Time-resolved X-ray absorption fine structure (XAFS) spectroscopy with picosecond temporal resolution is a new method to observe electronic and geometric structures of short-lived reaction intermediates. It combines an intense femtosecond laser source synchronized to the X-ray pulses delivered by a synchrotron Swiss light source (SLS). We present key experiments on charge transfer reactions as well as spin-crossover processes in coordination chemistry compounds next to solvation dynamics studies of photogenerated atomic radicals. These examples emphasize the observables at hand using ultrafast XAFS techniques, which include the density of states, full and even partial changes in oxidation state, and internuclear distances with milli-Angström accuracy. An outlook towards femtosecond studies and biologically relevant systems stresses the high potential of XAFS methods using new femtosecond X-ray sources like free electron lasers (XFELs).


Journal of Chemical Physics | 2002

Towards structural dynamics in condensed chemical systems exploiting ultrafast time-resolved x-ray absorption spectroscopy

Christian Bressler; Melanie Saes; Majed Chergui; Daniel Grolimund; Rafael Abela; Philip Pattison

The authors present the case for exploiting time-resolved x-ray absorption to study structural dynamics in the liq. phase. With this aim in mind and considering the large differences between absorption coeffs. in the optical and the x-ray domains as well as the x-ray absorption cross sections due to unexcited species, the authors have estd. the anticipated signal-to-noise ratio (S/N) under realistic conditions with femtosecond laser pump pulses and synchrotron radiation x-ray probe pulses. As a model system, the authors examine I- photodetachment in H2O and detect the appearance of laser-generated neutral I atoms by their x-ray near-edge absorption structure (XANES) and by their extended x-ray absorption fine structure (EXAFS). While the S/N ratio critically depends on the photolysis yield, which itself is governed by the optical absorption cross section, the optimum sample concn. varies in a complex fashion as a function of pump laser intensity and optical absorption cross section. However, concns. yielding near total absorption of the pump laser deliver quite optimum S/N ratios. The calcns. presented here provide guidelines for the implementation of time-resolved x-ray absorption expts. in condensed phase chem. systems. [on SciFinder (R)]


Journal of Chemical Theory and Computation | 2015

Optimized Finite Difference Method for the Full-Potential XANES Simulations: Application to Molecular Adsorption Geometries in MOFs and Metal–Ligand Intersystem Crossing Transients

Sergey A. Guda; Alexander A. Guda; Mikhail A. Soldatov; Kirill A. Lomachenko; Aram L. Bugaev; Carlo Lamberti; Wojciech Gawelda; Christian Bressler; Grigory Smolentsev; A. V. Soldatov; Yves Joly

Accurate modeling of the X-ray absorption near-edge spectra (XANES) is required to unravel the local structure of metal sites in complex systems and their structural changes upon chemical or light stimuli. Two relevant examples are reported here concerning the following: (i) the effect of molecular adsorption on 3d metals hosted inside metal-organic frameworks and (ii) light induced dynamics of spin crossover in metal-organic complexes. In both cases, the amount of structural models for simulation can reach a hundred, depending on the number of structural parameters. Thus, the choice of an accurate but computationally demanding finite difference method for the ab initio X-ray absorption simulations severely restricts the range of molecular systems that can be analyzed by personal computers. Employing the FDMNES code [Phys. Rev. B, 2001, 63, 125120] we show that this problem can be handled if a proper diagonalization scheme is applied. Due to the use of dedicated solvers for sparse matrices, the calculation time was reduced by more than 1 order of magnitude compared to the standard Gaussian method, while the amount of required RAM was halved. Ni K-edge XANES simulations performed by the accelerated version of the code allowed analyzing the coordination geometry of CO and NO on the Ni active sites in CPO-27-Ni MOF. The Ni-CO configuration was found to be linear, while Ni-NO was bent by almost 90°. Modeling of the Fe K-edge XANES of photoexcited aqueous [Fe(bpy)3](2+) with a 100 ps delay we identified the Fe-N distance elongation and bipyridine rotation upon transition from the initial low-spin to the final high-spin state. Subsequently, the X-ray absorption spectrum for the intermediate triplet state with expected 100 fs lifetime was theoretically predicted.

Collaboration


Dive into the Christian Bressler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Majed Chergui

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Rafael Abela

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

György Vankó

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Meedom Nielsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge