Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Broberger is active.

Publication


Featured researches published by Christian Broberger.


The Journal of Comparative Neurology | 1998

Hypocretin/Orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: Relationship to the neuropeptide Y and agouti gene-related protein systems

Christian Broberger; L. de Lecea; J.G. Sutcliffe; Tomas Hökfelt

Cells in the lateral hypothalamus and in the arcuate nucleus play prominent roles in the central control of food intake; however, a neurochemical link connecting these potential components of a hypothalamic circuitry regulating energy metabolism remains to be established. In the present study, the topographical relationship between cells expressing mRNAs encoding melanin‐concentrating hormone and the newly discovered neuropeptide family hypocretins/orexins was studied in the rat and mouse lateral hypothalamus by using double‐labeling in situ hybridization. Cells expressing the two mRNAs formed completely distinct populations, with hypocretin/orexin cells located primarily perifornically and in the magnocellular lateral hypothalamic nucleus; melanin‐concentrating hormone cells extended in a wider area both laterally and periventricularly and appeared to partly surround the hypocretin/orexin population. In the arcuate nucleus, cells expressing neuropeptide Y and agouti gene‐related protein were studied by routine fluorescence and/or confocal microscopy immunohistochemistry. Double staining demonstrated that a large proportion of the neuropeptide Y‐positive cell bodies in this nucleus also contained agouti gene‐related protein‐like immunoreactivity. Moreover, these two peptides also coexisted in nerve terminals surrounding and in close relationship to perikarya and processes of both hypocretin/orexin‐ and melanin‐concentrating hormone‐immunoreactive cells in the lateral hypothalamus, whereby the former appeared to receive a more dense innervation. These results thus provide evidence for an arcuate‐lateral hypothalamic neuropeptide Y/agouti gene‐related protein pathway. Furthermore, the results implicate hypocretin/orexin and melanin‐concentrating hormone‐expressing cells as downstream targets in neuropeptide Y‐induced feeding. J. Comp. Neurol. 402:460–474, 1998.


Neuroendocrinology | 1997

Subtypes Y1 and Y2 of the Neuropeptide Y Receptor Are Respectively Expressed in Pro-Opiomelanocortin- and Neuropeptide-Y-Containing Neurons of the Rat Hypothalamic Arcuate Nucleus

Christian Broberger; Marc Landry; Helen Wong; John N. Walsh; Tomas Hökfelt

The arcuate nucleus of the hypothalamus houses a number of neurochemically different cell populations. Among these, a dense cluster of small neuropeptide-Y (NPY)-expressing neurons is located in its ventromedial subdivision and a pro-opiomelanocortin (POMC)-expressing neuron population in its ventrolateral part. Furthermore, both neuropeptide Y Y1 and Y2 receptors (Y1-Rs and Y2-Rs) are expressed in the arcuate nucleus. Here we analyse the co-expression of NPY and POMC/adrenocorticotropic hormone with the Y1-R and Y2-R in arcuate neurons using immunohistochemistry and in situ hybridization. Many, but not all, POMC neurons expressed Y1-R mRNA and protein. Conversely, several Y1-R-positive, POMC-negative neurons were found. NPY-positive nerve terminals were found in close apposition to Y1-R-like immunoreactivity localized close to the dendritic and somatic cell membranes. Y2-R mRNA was found in almost all NPY mRNA-expressing neurons, but also in a group of NPY mRNA-negative cells. These results show that the POMC neurons are targets for NPY, which is presumably present in, and released from, fibres originating in the ventromedial arcuate nucleus and which may play a role in NPY-induced feeding. Release of NPY, and possible coexisting messengers, may be controlled by presynaptic Y2-R expressed in NPY neurons. Taken together, the findings support the division of Y1-Rs and Y2-Rs into post- and presynaptic receptors, respectively.


Brain Research | 1999

Hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y.

Christian Broberger

Recent demonstrations of the feeding-inhibitory properties of putative peptides derived from cocaine- and amphetamine-regulated transcript (CART) raise the question of interactions between CART peptides and other messenger molecules implicated in the control of food intake. The present study investigated the histochemical relationship of CART to the neuropeptides thyrotropin-releasing hormone (TRH), melanin-concentrating hormone (MCH), orexin/hypocretin and neuropeptide Y (NPY) in the hypothalamus. Double-label in situ hybridization showed that CART to a great extent is co-expressed with TRH in hypothalamic paraventricular nucleus neurons. This technique was also used to demonstrate that MCH, but not orexin/hypocretin, mRNA colocalized with CART in neurons of the dorsomedial hypothalamic nucleus/lateral hypothalamic area. CART-peptide immunoreactive cell bodies in this region, as well as in the arcuate nucleus and the medial posterodorsal nucleus of the amygdala, were all seen to have close appositions formed by NPY-immunoreactive nerve terminals. Lastly, in a study of mice treated with the neurotoxin, monosodium glutamate, which targets the arcuate nucleus, a near-total ablation of CART peptide immunoreactive cell bodies in this nucleus was accompanied by decreased terminal staining for CART peptide in the paraventricular hypothalamic nucleus, the arcuate nucleus itself and in the dorsomedial hypothalamic nucleus. These findings further define the position of hypothalamic CART neurons within the hierarchy of brain circuitries regulating energy balance, demonstrating the presence of CART peptide in several cell populations that form putative down-stream targets of NPY terminals, including hypophysiotropic TRH neurons and lateral hypothalamic MCH neurons.


The Journal of Neuroscience | 1998

Differential Distribution of α2A and α2C Adrenergic Receptor Immunoreactivity in the Rat Spinal Cord

Laura S. Stone; Christian Broberger; Lucy Vulchanova; George L. Wilcox; Tomas Hökfelt; Maureen Riedl; Robert Elde

α2-Adrenergic receptors (α2-ARs) mediate a number of physiological phenomena, including spinal analgesia. We have developed subtype-selective antisera against the C termini of the α2A-AR and α2C-AR to investigate the relative distribution and cellular source or sources of these receptor subtypes in the rat spinal cord. Immunoreactivity (IR) for both receptor subtypes was observed in the superficial layers of the dorsal horn of the spinal cord. Our results suggest that the primary localization of the α2A-AR in the rat spinal cord is on the terminals of capsaicin-sensitive, substance P (SP)-containing primary afferent fibers. In contrast, the majority of α2C-AR-IR was not of primary afferent origin, not strongly colocalized with SP-IR, and not sensitive to neonatal capsaicin treatment. Spinal α2C-AR-IR does not appear to colocalize with the neurokinin-1 receptor, nor is it localized on astrocytes, as evidenced by a lack of costaining with the glial marker GFAP. However, some colocalization was observed between α2C-AR-IR and enkephalin-IR, suggesting that the α2C-AR may be expressed by a subset of spinal interneurons. Interestingly, neither subtype was detected on descending noradrenergic terminals. These results indicate that the α2-AR subtypes investigated are likely expressed by different subpopulations of neurons and may therefore subserve different physiological functions in the spinal cord, with the α2A-AR being more likely to play a role in the modulation of nociceptive information.


Neuroscience | 2008

Distribution and neuropeptide coexistence of nucleobindin-2 mRNA/nesfatin-like immunoreactivity in the rat CNS.

K. S. Foo; Hjalmar Brismar; Christian Broberger

The protein fragment nesfatin-1 was recently implicated in the control of food intake. Central administration of this fragment results in anorexia and reduced body weight gain, whereas antisense or immunological nesfatin-1 antagonism causes increased food intake and overweight. Nesfatin-1 is derived from the precursor nucleobindin-2 (NUCB2). To identify the neurocircuitry underpinning the catabolic effects of NUCB2/nesfatin-1, we have used in situ hybridization and immunohistochemistry to map the distribution of this protein and its mRNA in the rat CNS and performed double-labeling experiments to localize its expression to functionally defined neuronal populations. These experiments confirm previous observations but also present several novel NUCB2 cell populations. Both NUCB2 mRNA and nesfatin-like immunoreactivity was most concentrated in the hypothalamus, in the supraoptic, paraventricular, periventricular and arcuate nuclei and the lateral hypothalamic area/perifornical region. Additionally, outside of the hypothalamus, labeling was observed in the thalamic parafascicular nucleus, the Edinger-Westphal nucleus, locus coeruleus, ventral raphe system, nucleus of solitary tract and in the preganglionic sympathetic intermediolateral cell column of the spinal cord, and the pituitary anterior and intermediate lobes. In neurons, immunoreactivity was almost exclusively confined to perikarya and primary dendrites with virtually no labeling of axonal terminals. Double-labeling immunohistochemistry revealed colocalization of nesfatin with vasopressin and oxytocin in magnocellular neuroendocrine neurons, thyrotropin-releasing hormone, corticotropin-releasing hormone, somatostatin, neurotensin, and growth-hormone-releasing hormone in parvocellular neuroendocrine neurons, pro-opiomelanocortin (but not neuropeptide Y) in the arcuate nucleus and melanin-concentrating hormone (but not hypocretin) in the lateral hypothalamus. Furthermore, nesfatin was extensively colocalized with cocaine- and amphetamine-regulated transcript in almost all NUCB2-expressing brain regions. These data reveal a wider distribution of NUCB2/nesfatin-1 than previously known, suggesting that the metabolic actions of this protein may involve not only feeding behavior but also endocrine and autonomic effects on energy expenditure. In addition, the subcellular distribution of nesfatin-like immunoreactivity indicates that this protein may not be processed like a conventional secreted neuromodulator.


Physiology & Behavior | 2001

Hypothalamic and vagal neuropeptide circuitries regulating food intake

Christian Broberger; Tomas Hökfelt

It has been recognized for some time that a number of different neuropeptides exert powerful effects on food intake. During the last few years, the neurocircuitry within which these peptides operate has also begun to be elucidated. Peptidergic feeding-regulatory neurones are found both in the hypothalamus and the brainstem, where they act as input stations for hormonal and gastrointestinal information, respectively. These cell populations both project to several other brain regions and interconnect extensively. The present review summarizes the neuroanatomy and connectivity of some prominent peptides involved in food intake control, including neuropeptide Y, melanocortin peptides, agouti gene-related protein, cocaine- and amphetamine-regulated transcript, orexin/hypocretin, melanin-concentrating hormone and cholecystokinin. Disturbances in the hypothalamic neuropeptide systems have been implicated in the phenotype of a genetic model of fatal hypophagia, the mouse anorexia (anx) mutation, which is also discussed.


Molecular Brain Research | 2001

Effect of LPS administration on the expression of POMC, NPY, galanin, CART and MCH mRNAs in the rat hypothalamus

Valeriy Sergeyev; Christian Broberger; Tomas Hökfelt

Anorexia and weight loss are manifestations of inflammation seen both in patients and in experimental animal models such as the lipopolysaccharide (LPS)-treated rat. Using in situ hybridization, the levels of mRNAs encoding proopiomelanocortin (POMC), neuropeptide Y (NPY), galanin, melanin-concentrating hormone (MCH) and cocaine- and amphetamine-regulated transcript (CART) were investigated in the rat hypothalamus after a single intraperitoneal dose (125 microg/kg) of LPS. Four hours after LPS injection the food intake was significantly decreased. POMC and CART mRNA levels were increased in the arcuate nucleus, and MCH, CART and galanin mRNAs were all decreased in the lateral hypothalamic area in LPS-treated rats. Levels of mRNAs for NPY and galanin in the arcuate nucleus, and for MCH and CART in the zona incerta did not change significantly after LPS treatment. These findings support the hypothesis that LPS-induced factors mediate signalling to the POMC/CART neurons in the arcuate nucleus which could lead to reduced food intake by decreasing MCH, CART and galanin synthesis in target lateral hypothalamic neurons.


The Journal of Neuroscience | 2009

Neuromedin B and Gastrin-Releasing Peptide Excite Arcuate Nucleus Neuropeptide Y Neurons in a Novel Transgenic Mouse Expressing Strong Renilla Green Fluorescent Protein in NPY Neurons

Anthony N. van den Pol; Yang Yao; Li-Ying Fu; Kylie S. Foo; Hao Huang; Roberto Coppari; Bradford B. Lowell; Christian Broberger

Neuropeptide Y (NPY) is one of the most widespread neuropeptides in the brain. Transgenic mice were generated that expressed bright Renilla green fluorescent protein (GFP) in most or all of the known NPY cells in the brain, which otherwise were not identifiable. GFP expression in NPY cells was confirmed with immunocytochemistry and single-cell reverse transcription-PCR. NPY neurons in the hypothalamic arcuate nucleus play an important role in energy homeostasis and endocrine control. Whole-cell patch clamp recording was used to study identified arcuate NPY cells. Primary agents that regulate energy balance include melanocortin receptor agonists, AgRP, and cannabinoids; none of these substances substantially influenced electrical properties of NPY neurons. In striking contrast, neuropeptides of the bombesin family, including gastrin-releasing peptide and neuromedin B, which are found in axons in the mediobasal hypothalamus and may also be released from the gut to signal the brain, showed strong direct excitatory actions at nanomolar levels on the NPY neurons, stronger than the actions of ghrelin and hypocretin/orexin. Bombesin-related peptides reduced input resistance and depolarized the membrane potential. The depolarization was attenuated by several factors: substitution of choline for sodium, extracellular Ni2+, inclusion of BAPTA in the pipette, KB-R7943, and SKF96365. Reduced extracellular calcium enhanced the current, which reversed around −20 mV. Together, these data suggest two mechanisms, activation of nonselective cation channels and the sodium/calcium exchanger. Since both NPY and POMC neurons, which we also studied, are similarly directly excited by bombesin-like peptides, the peptides may function to initiate broad activation, rather than the cell-type selective activation or inhibition reported for many other compounds that modulate energy homeostasis.


Neuroreport | 2000

Effect of 2-mercaptoacetate and 2-deoxy-D-glucose administration on the expression of NPY, AGRP, POMC, MCH and hypocretin/orexin in the rat hypothalamus.

Valeriy Sergeyev; Christian Broberger; Oleg Gorbatyuk; Tomas Hökfelt

Using in situ hybridization, the mRNA levels encoding neuropeptide Y (NPY), agouti gene-related protein (AGRP), proopiomelanocortin (POMC), melanin-concentrating hormone (MCH) and hypocretin/orexin (HC/ORX) were investigated in the rat arcuate nucleus (Arc) and lateral hypothalamic area (LHA) 2h after a single dose of the glucose antimetabolite 2-deoxy-D-glucose (2-DG; 600 mg/kg) or of the fatty acid oxidation inhibitor mercaptoacetate (MA; 600 μmol/kg). Two hours after 2-DG or MA injection food intake was significantly increased. NPY and AGRP mRNA levels in the Arc were increased by 2-DG but not affected by MA, and MCH mRNA levels in the LHA were increased by both antimetabolites. These results suggest that Arc neurons expressing NPY and AGRP are regulated by changes in glucose, but not fatty acid availability, whereas both factors affect MCH neurons in the LHA.


Brain Research | 2001

Expression and regulation of cholecystokinin and cholecystokinin receptors in rat nodose and dorsal root ganglia

Christian Broberger; Kristina Holmberg; Tiejun Shi; Graham J. Dockray; Tomas Hökfelt

Cholecystokinin (CCK) is an important satiety factor, acting via the vagus nerve to influence central feeding centers. CCK binding sites have been demonstrated in the vagal sensory nodose ganglion and within the nerve proper. Using in situ hybridization, expression of the CCK(A) and (B) receptors (Rs), as well as of CCK itself, was studied in the normal nodose ganglion (NG), and after vagotomy, starvation and high-fat diet. CCK(A)-R mRNA expression in dorsal root ganglia (DRGs) was also explored. In the NG, 33% of the neuron profiles (NPs) contained CCK(A)-R mRNA and in 9% we observed CCK(B)-R mRNA. CCK mRNA was not found in normal NGs. Peripheral vagotomy decreased the number of CCK(A)-R mRNA-expressing NPs, dramatically increased the number of CCK(B)-R mRNA, and induced CCK mRNA and preproCCK-like immunoreactivity in nodose NPs. No significant differences in the number of NPs labelled for either mRNA species were detected following 48 h food deprivation or in rats fed a high-fat content diet. In DRGs, 10% of the NPs expressed CCK(A)-R mRNA, a number that was not affected by either axotomy or inflammation. This cell population was distinct from neurons expressing calcitonin gene-related peptide mRNA. These results demonstrate that the CCK(A)-R is expressed by both viscero- and somatosensory primary sensory neurons, supporting a role for this receptor as a mediator both of CCK-induced satiety and in sensory processing at the spinal level. The stimulation of CCK and CCK(B)-R gene expression following vagotomy suggests a possible involvement in the response to injury for these molecules.

Collaboration


Dive into the Christian Broberger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xu Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hjalmar Brismar

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge