Christian Brunold
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Brunold.
Oecologia | 1999
Markus Ammann; Rolf T. W. Siegwolf; F. Pichlmayer; Marianne Suter; Matthias Saurer; Christian Brunold
Abstract The 15N ratio of nitrogen oxides (NOx) emitted from vehicles, measured in the air adjacent to a highway in the Swiss Middle Land, was very high [δ15N(NO2) = +5.7‰]. This high 15N abundance was used to estimate long-term NO2 dry deposition into a forest ecosystem by measuring δ15N in the needles and the soil of potted and autochthonous spruce trees [Picea abies (L.) Karst] exposed to NO2 in a transect orthogonal to the highway. δ15N in the current-year needles of potted trees was 2.0‰ higher than that of the control after 4 months of exposure close to the highway, suggesting a 25% contribution to the N-nutrition of these needles. Needle fall into the pots was prevented by grids placed above the soil, while the continuous decomposition of needle litter below the autochthonous trees over previous years has increased δ15N values in the soil, resulting in parallel gradients of δ15N in soil and needles with distance from the highway. Estimates of NO2 uptake into needles obtained from the δ15N data were significantly correlated with the inputs calculated with a shoot gas exchange model based on a parameterisation widely used in deposition modelling. Therefore, we provide an indication of estimated N inputs to forest ecosystems via dry deposition of NO2 at the receptor level under field conditions.
Planta | 1996
Gábor Kocsy; Monika Brunner; Adrian Rüegsegger; Peter Stamp; Christian Brunold
The effect of chilling on enzymes, substrates and products of sulfate reduction, gultathione synthesis and metabolism was studied in shoots and roots of maize (Zea mays L.) genotypes with different chilling sensitivity. At full expansion of the second leaf, chilling at 12 °C inhibited dry weight increase in shoots and roots compared to controls at 25 °C and induced an increase in adenosine 5′-phosphosulfate sulfotransferase and γ-glutamylcysteine synthetase (EC 6.3.2.2) activity in the second leaf of all genotypes tested. Glutathione synthetase (EC 6.3.2.3) activity was about one order of magnitude higher than γ-glutamylcysteine synthetase activity, but remained unchanged during chilling except for one genotype. During chilling, cysteine and glutathione content of second leaves increased to significantly higher levels in the two most chilling-tolerant genotypes. Comparing the most tolerant and most sensitive genotype showed that chilling induced a greater incorporation of35S from [35S]sulfate into cysteine and glutathione in the chilling-tolerant than in the sensitive genotype. Chilling decreased the amount of35S-label incorporated into proteins in shoots of both genotypes, but had no effect on this incorporation in the roots. Glutathione reductase (EC 1.6.4.2) and nitrate reductase (EC 1.6.6.1) activity were constitutively higher in the chilling-tolerant genotypes, but showed no changes in most examined genotypes during 3 d at 12 °C. Our results indicate that in maize glutathione is involved in protection against chilling damage.
Plant Physiology | 2002
Stanislav Kopriva; Marianne Suter; Peter von Ballmoos; Holger Hesse; Urs Krähenbühl; Heinz Rennenberg; Christian Brunold
Cysteine synthesis from sulfide andO-acetyl-l-serine (OAS) is a reaction interconnecting sulfate, nitrogen, and carbon assimilation. UsingLemna minor, we analyzed the effects of omission of CO2 from the atmosphere and simultaneous application of alternative carbon sources on adenosine 5′-phosphosulfate reductase (APR) and nitrate reductase (NR), the key enzymes of sulfate and nitrate assimilation, respectively. Incubation in air without CO2 led to severe decrease in APR and NR activities and mRNA levels, but ribulose-1,5-bisphosphate carboxylase/oxygenase was not considerably affected. Simultaneous addition of sucrose (Suc) prevented the reduction in enzyme activities, but not in mRNA levels. OAS, a known regulator of sulfate assimilation, could also attenuate the effect of missing CO2 on APR, but did not affect NR. When the plants were subjected to normal air after a 24-h pretreatment in air without CO2, APR and NR activities and mRNA levels recovered within the next 24 h. The addition of Suc and glucose in air without CO2 also recovered both enzyme activities, with OAS again influenced only APR.35SO4 2− feeding showed that treatment in air without CO2 severely inhibited sulfate uptake and the flux through sulfate assimilation. After a resupply of normal air or the addition of Suc, incorporation of 35S into proteins and glutathione greatly increased. OAS treatment resulted in high labeling of cysteine; the incorporation of 35S in proteins and glutathione was much less increased compared with treatment with normal air or Suc. These results corroborate the tight interconnection of sulfate, nitrate, and carbon assimilation.
Journal of Biological Chemistry | 2000
Marianne Suter; Peter von Ballmoos; Stanislav Kopriva; Roel Op den Camp; Johann Schaller; Cris Kuhlemeier; Peter Schürmann; Christian Brunold
Adenosine 5′-phosphosulfate (APS) sulfotransferase and APS reductase have been described as key enzymes of assimilatory sulfate reduction of plants catalyzing the reduction of APS to bound and free sulfite, respectively. APS sulfotransferase was purified to homogeneity from Lemna minor and compared with APS reductase previously obtained by functional complementation of a mutant strain of Escherichia coli with an Arabidopsis thaliana cDNA library. APS sulfotransferase was a homodimer with a monomer M r of 43,000. Its amino acid sequence was 73% identical with APS reductase. APS sulfotransferase purified from Lemna as well as the recombinant enzyme were yellow proteins, indicating the presence of a cofactor. Like recombinant APS reductase, recombinant APS sulfotransferase used APS (K m = 6.5 μm) and not adenosine 3′-phosphate 5′-phosphosulfate as sulfonyl donor. TheV max of recombinant Lemna APS sulfotransferase (40 μmol min−1 mg protein−1) was about 10 times higher than the previously published V max of APS reductase. The product of APS sulfotransferase from APS and GSH was almost exclusively SO3 2−. Bound sulfite in the form ofS-sulfoglutathione was only appreciably formed when oxidized glutathione was added to the incubation mixture. Because SO3 2− was the first reaction product of APS sulfotransferase, this enzyme should be renamed APS reductase.
Progress in botany | 1994
Heinz Rennenberg; Christian Brunold
In higher plants the tripeptide glutathione (GSH; γ-glu-cys-gly) and its homologs homoglutathione (hGSH; γ-glu-cys-β-ala) and hydroxymethylglutathione (γ-glu-cys-ser) are generally thought to be the most abundant low molecular weight thiols (Kasai and Larsen 1980; Bergmann and Rennenberg 1993). As products of the plant’s primary metabolism, these compounds have received considerable attention during recent years, because they are not only involved in storage and distribution of reduced sulfur within the plant, and hence in the regulation of sulfur nutrition, but are also essential components of the plant’s defence system for environmental stress (Fig. 1).
Plant Physiology and Biochemistry | 2001
Sue Westerman; I. Stulen; Marianne Suter; Christian Brunold; Luit J. De Kok
Short-term exposure of Brassica oleracea L. (curly kale) to atmospheric H2S levels (0.2–0.8 μL·L–1), which are sufficient to meet the plants sulphur requirement, resulted in a decrease in the activity of adenosine 5’-phosphosulphate reductase (APR) in the shoot. The reduction in APR activity was maximally 80 % and was already substantial after 1 d exposure to 0.2 μL·L–1 H2S. The activity of APR in the roots remained unaffected upon exposure to all levels of H2S. The activities of ATP-sulphurylase (ATPS), serine acetyltransferase (SAT) and O-acetylserine(thiol)lyase (OAS-TL), in both shoot and roots were not affected upon exposure to H2S levels ranging from 0.2–0.8 μL·L–1. There was a rapid increase in the shoot thiol content, including cysteine, upon H2S exposure and a maximal 3-fold increase in thiol content occurred after 5 h exposure. In the roots, the thiol content was only slightly increased after 2 d H2S exposure. The relationship between the pattern of thiol accumulation and changes in sulphate assimilation upon H2S exposure is discussed.
Plant Physiology | 2001
Gaibor Kocsy; Peter von Ballmoos; Adrian Rüegsegger; Gabriella Szalai; Gaibor Galiba; Christian Brunold
With the aim of analyzing their protective function against chilling-induced injury, the pools of glutathione and its precursors, cysteine (Cys) and gamma-glutamyl-Cys, were increased in the chilling-sensitive maize (Zea mays) inbred line Penjalinan using a combination of two herbicide safeners. Compared with the controls, the greatest increase in the pool size of the three thiols was detected in the shoots and roots when both safeners were applied at a concentration of 5 microM. This combination increased the relative protection from chilling from 50% to 75%. It is interesting that this increase in the total glutathione (TG) level was accompanied by a rise in glutathione reductase (GR; EC 1.6.4.2) activity. When the most effective safener combination was applied simultaneously with increasing concentrations of buthionine sulfoximine, a specific inhibitor of glutathione synthesis, the total gamma-glutamyl-Cys and TG contents and GR activity were decreased to very low levels and relative protection was lowered from 75% to 44%. During chilling, the ratio of reduced to oxidized thiols first decreased independently of the treatments, but increased again to the initial value in safener-treated seedlings after 7 d at 5 degrees C. Taking all results together resulted in a linear relationship between TG and GR and a biphasic relationship between relative protection and GR or TG, thus demonstrating the relevance of the glutathione levels in protecting maize against chilling-induced injury.
Journal of Biological Chemistry | 2001
Stanislav Kopriva; Thomas Büchert; Günter Fritz; Marianne Suter; Markus Weber; Rüdiger Benda; Johann Schaller; Urs Feller; Peter Schürmann; Volker Schünemann; Alfred X. Trautwein; Peter M. H. Kroneck; Christian Brunold
Adenosine 5′-phosphosulfate reductase (APR) catalyzes the two-electron reduction of adenosine 5′-phosphosulfate to sulfite and AMP, which represents the key step of sulfate assimilation in higher plants. Recombinant APRs from both Lemna minorand Arabidopsis thaliana were overexpressed inEscherichia coli and isolated as yellow-brown proteins. UV-visible spectra of these recombinant proteins indicated the presence of iron-sulfur centers, whereas flavin was absent. This result was confirmed by quantitative analysis of iron and acid-labile sulfide, suggesting a [4Fe-4S] cluster as the cofactor. EPR spectroscopy of freshly purified enzyme showed, however, only a minor signal at g = 2.01. Therefore, Mössbauer spectra of 57Fe-enriched APR were obtained at 4.2 K in magnetic fields of up to 7 tesla, which were assigned to a diamagnetic [4Fe-4S]2+ cluster. This cluster was unusual because only three of the iron sites exhibited the same Mössbauer parameters. The fourth iron site gave, because of the bistability of the fit, a significantly smaller isomer shift or larger quadrupole splitting than the other three sites. Thus, plant assimilatory APR represents a novel type of adenosine 5′-phosphosulfate reductase with a [4Fe-4S] center as the sole cofactor, which is clearly different from the dissimilatory adenosine 5′-phosphosulfate reductases found in sulfate reducing bacteria.
Planta | 2000
Gábor Kocsy; Peter von Ballmoos; Marianne Suter; Adrian Rüegsegger; Ulrich Galli; Gabriella Szalai; Gábor Galiba; Christian Brunold
Abstract. The role of glutathione (GSH) in protecting plants from chilling injury was analyzed in seedlings of a chilling-tolerant maize (Zea mays L.) genotype using buthionine sulfoximine (BSO), a specific inhibitor of γ-glutamylcysteine (γEC) synthetase, the first enzyme of GSH synthesis. At 25 °C, 1 mM BSO significantly increased cysteine and reduced GSH content and GSH reductase (GR: EC 1.6.4.2) activity, but interestingly affected neither fresh weight nor dry weight nor relative injury. Application of BSO up to 1 mM during chilling at 5 °C reduced the fresh and dry weights of shoots and roots and increased relative injury from 10 to almost 40%. Buthionine sulfoximine also induced a decrease in GR activity of 90 and 40% in roots and shoots, respectively. Addition of GSH or γEC together with BSO to the nutrient solution protected the seedlings from the BSO effect by increasing the levels of GSH and GR activity in roots and shoots. During chilling, the level of abscisic acid increased both in controls and BSO-treated seedlings and decreased after chilling in roots and shoots of the controls and in the roots of BSO-treated seedlings, but increased in their shoots. Taken together, our results show that BSO did not reduce chilling tolerance of the maize genotype analyzed by inhibiting abscisic acid accumulation but by establishing a low level of GSH, which also induced a decrease in GR activity.
Planta | 1996
Ulrich Galli; Hannes Schuepp; Christian Brunold
Maize plants (Zea mays L. cv. Honeycomb F-1) were grown on quartz sand containing amounts of Cd or Cu which resulted in comparable internal contents in the roots. Fresh and dry weights and the content of Cd or Cu were measured in roots and shoots after eight weeks. In addition, cysteine, γ-glutamylcysteine (γEC), glutathione (GSH) and the thiols in heavy-metal-binding peptides (HMBPs) were determined in the roots. At low internal contents, Cd and Cu inhibited root growth to the same extent. Inhibition by Cu was enhanced, however, at high internal contents, indicating that Cu was more toxic than Cd. Separation of extracts from roots of Cd- and Cutreated plants on a Sephadex G-50 column resulted in HMBP complexes with relative molecular masses (Mrs) of 6200 and 7300, respectively. Separation of these HMBP-complexes using HPLC resulted in a distinct pattern of thiol compounds for each heavy metal. The accumulation of HMBPs was linearly dependent on the content of Cd at all values examined. In Cu-treated roots, HMBP accumulation was linearly dependent on the internal Cu content only up to 7.1 μmol·g−1 dry weight. At internal contents which caused an enhanced inhibition of root growth, no further significant increase in the HMBP content was detected. At these internal Cu contents an increased transport of Cu to the shoot was measured. This result indicates that HMBPs are involved in reducing heavy-metal transport from roots to shoots.