Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Damblon is active.

Publication


Featured researches published by Christian Damblon.


Applied and Environmental Microbiology | 2009

High-level biosynthesis of the anteiso-C(17) isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity.

Patrick Fickers; J.S. Guez; Christian Damblon; Valérie Leclère; Max Béchet; Philippe Jacques; Bernard Joris

ABSTRACT High-level production (880 mg liter−1) and isolation of the anteiso-C17 isoform of the lipopeptide mycosubtilin produced by a genetically engineered Bacillus subtilis strain are reported. Antifungal activity of this isoform, as determined via culture and fluorometric and cell leakage assays, suggests its potential therapeutic use as an antifungal agent, in particular against Candida spp.


Metallomics | 2014

A variety of roles for versatile zinc in metallo-β-lactamases

Andreas Ioannis Karsisiotis; Christian Damblon; Gordon C. K. Roberts

Metallo-β-lactamases are important as a major source of resistance of pathogenic bacteria to the widely used β-lactam antibiotics. They show considerable diversity in terms of sequence and are grouped into three subclasses, B1, B2 and B3, which share a common overall fold. In each case the active enzyme has binding sites for two zinc ions in close proximity, although the amino-acid residues which coordinate the metals vary from one subclass to another. In subclasses B1 and B3, there has been controversy about whether both zinc ions are required for activity, but the most recent evidence indicates that there is positive cooperativity in zinc binding and that the catalytically relevant species is the di-zinc enzyme. Subclass B2 enzymes, on the other hand, are active in the mono-zinc state and are inhibited by the binding of a second zinc ion. Evidence for the importance of the zinc ions in substrate binding has come from structures of product complexes which indicate that the β-lactam core binds to subclass B1 and B3 enzymes in a rather consistent fashion, interactions with the zinc ions being centrally important. The zinc ions play key roles in the catalytic mechanism, including facilitating nucleophilic attack on the amide carbonyl by the zinc-bound hydroxide ion, stabilising the anionic tetrahedral intermediate and coordinating the departing amine nitrogen.


BMC Genomics | 2009

Putative DNA G-quadruplex formation within the promoters of Plasmodium falciparum var genes

Nicolas Smargiasso; Valérie Gabelica; Christian Damblon; Frédéric Rosu; Edwin De Pauw; Marie-Paule Teulade-Fichou; J. Alexandra Rowe; Antoine Claessens

BackgroundGuanine-rich nucleic acid sequences are capable of folding into an intramolecular four-stranded structure called a G-quadruplex. When found in gene promoter regions, G-quadruplexes can downregulate gene expression, possibly by blocking the transcriptional machinery. Here we have used a genome-wide bioinformatic approach to identify Putative G-Quadruplex Sequences (PQS) in the Plasmodium falciparum genome, along with biophysical techniques to examine the physiological stability of P. falciparum PQS in vitro.ResultsWe identified 63 PQS in the non-telomeric regions of the P. falciparum clone 3D7. Interestingly, 16 of these PQS occurred in the upstream region of a subset of the P. falciparum var genes (group B var genes). The var gene family encodes PfEMP1, the parasites major variant antigen and adhesin expressed at the surface of infected erythrocytes, that plays a key role in malaria pathogenesis and immune evasion. The ability of the PQS found in the upstream regions of group B var genes (UpsB-Q) to form stable G-quadruplex structures in vitro was confirmed using 1H NMR, circular dichroism, UV spectroscopy, and thermal denaturation experiments. Moreover, the synthetic compound BOQ1 that shows a higher affinity for DNA forming quadruplex rather than duplex structures was found to bind with high affinity to the UpsB-Q.ConclusionThis is the first demonstration of non-telomeric PQS in the genome of P. falciparum that form stable G-quadruplexes under physiological conditions in vitro. These results allow the generation of a novel hypothesis that the G-quadruplex sequences in the upstream regions of var genes have the potential to play a role in the transcriptional control of this major virulence-associated multi-gene family.


European Journal of Pharmaceutical Sciences | 2016

Investigation of a suitable in vitro dissolution test for itraconazole-based solid dispersions.

Justine Thiry; Guy Broze; Aude Pestieau; Andrew S. Tatton; Christian Damblon; Fabrice Krier; Brigitte Evrard

The difficulty to find a relevant in vitro dissolution test to evaluate poorly soluble drugs is a well-known issue. One way to enhance their aqueous solubility is to formulate them as amorphous solid dispersions. In this study, three formulations containing itraconazole (ITZ), a model drug, were tested in seven different conditions (different USP apparatuses and different media). Two of the formulations were amorphous solid dispersions namely Sporanox®, the marketed product, and extrudates composed of Soluplus® and ITZ produced by hot melt extrusion; and the last one was pure crystalline ITZ capsules. After each test, a ranking of the formulations was established. Surprisingly, the two amorphous solid dispersions exhibited very different behavior depending primarily on the dissolution media. Indeed, the extrudates showed a better release profile than Sporanox® in non-sink and in biphasic conditions, whilst Sporanox® showed a higher release profile than the extrudates in sink and fasted simulated gastric conditions. The disintegration, dynamic light scattering and nuclear magnetic resonance results highlighted the presence of interaction between the surfactants and Soluplus®, which slowed down the erosion of the polymer matrix. Indeed, the negative charge of sodium dodecyl sulfate (SDS) and bile salts interacted with the surface of the extrudates that formed a barrier through which the water hardly diffused. Moreover, Soluplus® and SDS formed mixed micelles in solution in which ITZ interacts with SDS, but no longer with Soluplus®. Regarding the biphasic dissolution test, the interactions between the octanol dissolved in the aqueous media disrupted the polymer--ITZ system leading to a reduced release of ITZ from Sporanox®, whilst it had no influence on the extrudates. All together these results pointed out the difficulty of finding a suitable in vitro dissolution test due to interactions between the excipients that complicates the prediction of the behavior of these solid dispersions in vivo.


PLOS ONE | 2012

Ligand Binding Study of Human PEBP1/RKIP: Interaction with Nucleotides and Raf-1 Peptides Evidenced by NMR and Mass Spectrometry

Laurette Tavel; Lucie Jaquillard; Andreas I. Karsisiotis; Fabienne Saab; Laurence Jouvensal; Alain Brans; Agnès F. Delmas; Françoise Schoentgen; Martine Cadene; Christian Damblon

Background Human Phosphatidylethanolamine binding protein 1 (hPEBP1) also known as Raf kinase inhibitory protein (RKIP), affects various cellular processes, and is implicated in metastasis formation and Alzheimers disease. Human PEBP1 has also been shown to inhibit the Raf/MEK/ERK pathway. Numerous reports concern various mammalian PEBP1 binding ligands. However, since PEBP1 proteins from many different species were investigated, drawing general conclusions regarding human PEBP1 binding properties is rather difficult. Moreover, the binding site of Raf-1 on hPEBP1 is still unknown. Methods/Findings In the present study, we investigated human PEBP1 by NMR to determine the binding site of four different ligands: GTP, FMN, and one Raf-1 peptide in tri-phosphorylated and non-phosphorylated forms. The study was carried out by NMR in near physiological conditions, allowing for the identification of the binding site and the determination of the affinity constants KD for different ligands. Native mass spectrometry was used as an alternative method for measuring KD values. Conclusions/Significance Our study demonstrates and/or confirms the binding of hPEBP1 to the four studied ligands. All of them bind to the same region centered on the conserved ligand-binding pocket of hPEBP1. Although the affinities for GTP and FMN decrease as pH, salt concentration and temperature increase from pH 6.5/NaCl 0 mM/20°C to pH 7.5/NaCl 100 mM/30°C, both ligands clearly do bind under conditions similar to what is found in cells regarding pH, salt concentration and temperature. In addition, our work confirms that residues in the vicinity of the pocket rather than those within the pocket seem to be required for interaction with Raf-1.


Antimicrobial Agents and Chemotherapy | 2016

Interaction of Avibactam with Class B Metallo-β-Lactamases

Martine I. Abboud; Christian Damblon; Jürgen Brem; Nicolas Smargiasso; Bernard Gilbert; Anna M. Rydzik; Timothy D. W. Claridge; Christopher J. Schofield; Jean-Marie Frère

ABSTRACT β-Lactamases are the most important mechanisms of resistance to the β-lactam antibacterials. There are two mechanistic classes of β-lactamases: the serine β-lactamases (SBLs) and the zinc-dependent metallo-β-lactamases (MBLs). Avibactam, the first clinically useful non-β-lactam β-lactamase inhibitor, is a broad-spectrum SBL inhibitor, which is used in combination with a cephalosporin antibiotic (ceftazidime). There are multiple reports on the interaction of avibactam with SBLs but few such studies with MBLs. We report biochemical and biophysical studies on the binding and reactivity of avibactam with representatives from all 3 MBL subfamilies (B1, B2, and B3). Avibactam has only limited or no activity versus MBL-mediated resistance in pathogens. Avibactam does not inhibit MBLs and binds only weakly to most of the MBLs tested; in some cases, avibactam undergoes slow hydrolysis of one of its urea N-CO bonds followed by loss of CO2, in a process different from that observed with the SBLs studied. The results suggest that while the evolution of MBLs that more efficiently catalyze avibactam hydrolysis should be anticipated, pursuing the development of dual-action SBL and MBL inhibitors based on the diazabicyclooctane core of avibactam may be productive.


Applied Microbiology and Biotechnology | 2017

Identification and characterization of EYK1, a key gene for erythritol catabolism in Yarrowia lipolytica

Frédéric Carly; Heber Gamboa-Meléndez; Marie Vandermies; Christian Damblon; Jean-Marc Nicaud; Patrick Fickers

Erythritol is a four-carbon sugar alcohol synthesized by osmophilic yeasts, such as Yarrowia lipolytica, in response to osmotic stress. This metabolite has application as food additive due to its sweetening properties. Although Y. lipolytica can produce erythritol at a high level from glycerol, it is also able to consume it as carbon source. This ability negatively affects erythritol productivity and represents a serious drawback for the development of an efficient erythritol production process. In this study, we have isolated by insertion mutagenesis a Y. lipolytica mutant unable to grow on erythritol. Genomic characterization of the latter highlighted that the mutant phenotype is directly related to the disruption of the YALI0F01606g gene. Several experimental evidences suggested that the identified gene, renamed EYK1, encodes an erythrulose kinase. The mutant strain showed an enhanced capacity to produce erythritol as compared to the wild-type strain. Moreover, in specific experimental conditions, it is also able to convert erythritol to erythrulose, another compound of biotechnological interest.


Bioorganic & Medicinal Chemistry | 2013

Synthesis and biological evaluation of potential threonine synthase inhibitors: Rhizocticin A and Plumbemycin A.

Mathias Gahungu; Anthony Arguelles-Arias; Patrick Fickers; Astrid Zervosen; Bernard Joris; Christian Damblon; André Luxen

Rhizocticins and Plumbemycins are natural phosphonate antibiotics produced by the bacterial strains Bacillus subtilis ATCC 6633 and Streptomyces plumbeus, respectively. Up to now, these potential threonine synthase inhibitors have only been synthesized under enzymatic catalysis. Here we report the chemical stereoselective synthesis of the non-proteinogenic (S,Z)-2-amino-5-phosphonopent-3-enoic acid [(S,Z)-APPA] and its use for the synthesis of Rhizocticin A and Plumbemycin A. In this work, (S,Z)-APPA was synthesized via the Still-Gennari olefination starting from Garners aldehyde. The Michaelis-Arbuzov reaction was used to form the phosphorus-carbon bond. Oligopeptides were prepared using liquid phase peptide synthesis (LPPS) and were tested against selected bacteria and fungi.


Chemical Communications | 2012

Efficient determination of diffusion coefficients by monitoring transport during recovery delays in NMR

Rafal Augustyniak; Fabien Ferrage; Christian Damblon; Geoffrey Bodenhausen; Philippe Pelupessy

A novel NMR approach allows one to efficiently determine translational diffusion coefficients of macromolecules in solution. This method for Signal Optimization with Recovery in Diffusion Delays (SORDID) monitors transport occurring during the recovery times between consecutive scans so that the duration of the measurements can be reduced approximately by a factor two.


Plant Molecular Biology | 2016

Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis.

Clémentine Laurent; Gilles Lekeux; Ashwinie A. Ukuwela; Zhiguang Xiao; Jean-Benoit Charlier; Bernard Bosman; Monique Carnol; Patrick Motte; Christian Damblon; Moreno Galleni; Marc Hanikenne

PIB ATPases are metal cation pumps that transport metals across membranes. These proteins possess N- and C-terminal cytoplasmic extensions that contain Cys- and His-rich high affinity metal binding domains, which may be involved in metal sensing, metal ion selectivity and/or in regulation of the pump activity. The PIB ATPase HMA4 (Heavy Metal ATPase 4) plays a central role in metal homeostasis in Arabidopsis thaliana and has a key function in zinc and cadmium hypertolerance and hyperaccumulation in the extremophile plant species Arabidopsis halleri. Here, we examined the function and structure of the N-terminal cytoplasmic metal-binding domain of HMA4. We mutagenized a conserved CCTSE metal-binding motif in the domain and assessed the impact of the mutations on protein function and localization in planta, on metal-binding properties in vitro and on protein structure by Nuclear Magnetic Resonance spectroscopy. The two Cys residues of the motif are essential for the function, but not for localization, of HMA4 in planta, whereas the Glu residue is important but not essential. These residues also determine zinc coordination and affinity. Zinc binding to the N-terminal domain is thus crucial for HMA4 protein function, whereas it is not required to maintain the protein structure. Altogether, combining in vivo and in vitro approaches in our study provides insights towards the molecular understanding of metal transport and specificity of metal P-type ATPases.

Collaboration


Dive into the Christian Damblon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge