Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Diot is active.

Publication


Featured researches published by Christian Diot.


BMC Genomics | 2008

Transcriptome profiling of the feeding-to-fasting transition in chicken liver

Colette Désert; M. J. Duclos; Pierre Blavy; Frédéric Lecerf; François Moreews; Christophe Klopp; Marc Aubry; Frédéric Hérault; Pascale Le Roy; Cécile Berri; Madeleine Douaire; Christian Diot; Sandrine Lagarrigue

BackgroundStarvation triggers a complex array of adaptative metabolic responses including energy-metabolic responses, a process which must imply tissue specific alterations in gene expression and in which the liver plays a central role. The present study aimed to describe the evolution of global gene expression profiles in liver of 4-week-old male chickens during a 48 h fasting period using a chicken 20 K oligoarray.ResultsA large number of genes were modulated by fasting (3532 genes with a pvalue corrected by Benjamini-Hochberg < 0.01); 2062 showed an amplitude of variation higher than +/- 40% among those, 1162 presented an human ortholog, allowing to collect functional information. Notably more genes were down-regulated than up-regulated, whatever the duration of fasting (16 h or 48 h). The number of genes differentially expressed after 48 h of fasting was 3.5-fold higher than after 16 h of fasting. Four clusters of co-expressed genes were identified by a hierarchical cluster analysis. Gene Ontology, KEGG and Ingenuity databases were then used to identify the metabolic processes associated to each cluster. After 16 h of fasting, genes involved in ketogenesis, gluconeogenesis and mitochondrial or peroxisomal fatty acid beta-oxidation, were up-regulated (cluster-1) whereas genes involved in fatty acid and cholesterol synthesis were down-regulated (cluster-2). For all genes tested, the microarray data was confirmed by quantitative RT-PCR. Most genes were altered by fasting as already reported in mammals. A notable exception was the HMG-CoA synthase 1 gene, which was up-regulated following 16 and 48 h of fasting while the other genes involved in cholesterol metabolism were down-regulated as reported in mammalian studies. We further focused on genes not represented on the microarray and candidates for the regulation of the target genes belonging to cluster-1 and -2 and involved in lipid metabolism. Data are provided concerning PPARa, SREBP1, SREBP2, NR1H3 transcription factors and two desaturases (FADS1, FADS2).ConclusionThis study evidences numerous genes altered by starvation in chickens and suggests a global repression of cellular activity in response to this stressor. The central role of lipid and acetyl-CoA metabolisms and its regulation at transcriptional level are confirmed in chicken liver in response to short-term fasting. Interesting expression modulations were observed for NR1H3, FADS1 and FADS2 genes. Further studies are needed to precise their role in the complex regulatory network controlling lipid metabolism.


PLOS ONE | 2012

The duplicated genes database: identification and functional annotation of co-localised duplicated genes across genomes.

Marion Ouedraogo; Charles Bettembourg; Anthony Bretaudeau; Olivier Sallou; Christian Diot; Olivier Demeure; Frédéric Lecerf

Background There has been a surge in studies linking genome structure and gene expression, with special focus on duplicated genes. Although initially duplicated from the same sequence, duplicated genes can diverge strongly over evolution and take on different functions or regulated expression. However, information on the function and expression of duplicated genes remains sparse. Identifying groups of duplicated genes in different genomes and characterizing their expression and function would therefore be of great interest to the research community. The ‘Duplicated Genes Database’ (DGD) was developed for this purpose. Methodology Nine species were included in the DGD. For each species, BLAST analyses were conducted on peptide sequences corresponding to the genes mapped on a same chromosome. Groups of duplicated genes were defined based on these pairwise BLAST comparisons and the genomic location of the genes. For each group, Pearson correlations between gene expression data and semantic similarities between functional GO annotations were also computed when the relevant information was available. Conclusions The Duplicated Gene Database provides a list of co-localised and duplicated genes for several species with the available gene co-expression level and semantic similarity value of functional annotation. Adding these data to the groups of duplicated genes provides biological information that can prove useful to gene expression analyses. The Duplicated Gene Database can be freely accessed through the DGD website at http://dgd.genouest.org.


Animal Genetics | 2010

Liver gene expression in relation to hepatic steatosis and lipid secretion in two duck species.

Frédéric Hérault; Gladys Saez; Estelle Robert; A. Al Mohammad; S. Davail; Pascal Chartrin; E. Baéza; Christian Diot

The susceptibility to development of hepatic steatosis is known to differ between Muscovy and Pekin ducks. Although some experiments were conducted to decipher these differences, few data have been produced to analyse the role of specific genes in this process. For this purpose, expression levels of genes involved in lipid (ATP citrate lyase, malic enzyme 1, fatty acid synthase, stearoyl-CoA desaturase 1, diacylglycerol O-acyl transferase 2, microsomal triglyceride transfer protein, apolipoprotein A1, apolipoprotein B, sterol regulatory element binding factor 1, hepatocyte nuclear factor 4, choline/ethanolamine phosphotransferase 1, carnitine palmitoyl transferase 1A, peroxisome proliferator-activated receptor alpha and sterol O-acyltransferase) and carbohydrate (activating transcription factor 4 or cAMP-response element binding protein, mitochondrial malate dehydrogenase 2 and carbohydrate responsive element binding protein) metabolism and in other functions were analysed in the liver of Pekin and Muscovy ducks fed ad libitum or overfed. A specific positive effect of feeding was observed on the expression of genes involved mainly in fatty acids and TG synthesis and glycolysis, and negative effect on genes involved in beta-oxidation. Interestingly, a strong species effect was also observed on stearoyl-CoA desaturase 1 and to a lesser extent on diacylglycerol O-acyl transferase 2 expression, leading to large differences in expression levels between Pekin and Muscovy overfed ducks, which could explain the difference in lipid metabolism and steatosis ability observed between the two duck species. These results should shed light on gene expression that might underlie susceptibility to hepatic steatosis in humans.


PLOS ONE | 2014

Semantic Particularity Measure for Functional Characterization of Gene Sets Using Gene Ontology

Charles Bettembourg; Christian Diot; Olivier Dameron

Background Genetic and genomic data analyses are outputting large sets of genes. Functional comparison of these gene sets is a key part of the analysis, as it identifies their shared functions, and the functions that distinguish each set. The Gene Ontology (GO) initiative provides a unified reference for analyzing the genes molecular functions, biological processes and cellular components. Numerous semantic similarity measures have been developed to systematically quantify the weight of the GO terms shared by two genes. We studied how gene set comparisons can be improved by considering gene set particularity in addition to gene set similarity. Results We propose a new approach to compute gene set particularities based on the information conveyed by GO terms. A GO term informativeness can be computed using either its information content based on the term frequency in a corpus, or a function of the terms distance to the root. We defined the semantic particularity of a set of GO terms Sg1 compared to another set of GO terms Sg2. We combined our particularity measure with a similarity measure to compare gene sets. We demonstrated that the combination of semantic similarity and semantic particularity measures was able to identify genes with particular functions from among similar genes. This differentiation was not recognized using only a semantic similarity measure. Conclusion Semantic particularity should be used in conjunction with semantic similarity to perform functional analysis of GO-annotated gene sets. The principle is generalizable to other ontologies.


BMC Genomics | 2012

Fine mapping of complex traits in non-model species: using next generation sequencing and advanced intercross lines in Japanese quail

Laure Frésard; Sophie Leroux; Patrice Dehais; Bertrand Servin; Hélène Gilbert; Olivier Bouchez; Christophe Klopp; Cédric Cabau; Florence Vignoles; Katia Feve; Amélie Ricros; David Gourichon; Christian Diot; Sabine Richard; Christine Leterrier; Catherine Beaumont; Alain Vignal; Francis Minvielle; Frédérique Pitel

BackgroundAs for other non-model species, genetic analyses in quail will benefit greatly from a higher marker density, now attainable thanks to the evolution of sequencing and genotyping technologies. Our objective was to obtain the first genome wide panel of Japanese quail SNP (Single Nucleotide Polymorphism) and to use it for the fine mapping of a QTL for a fear-related behaviour, namely tonic immobility, previously localized on Coturnix japonica chromosome 1. To this aim, two reduced representations of the genome were analysed through high-throughput 454 sequencing: AFLP (Amplified Fragment Length Polymorphism) fragments as representatives of genomic DNA, and EST (Expressed Sequence Tag) as representatives of the transcriptome.ResultsThe sequencing runs produced 399,189 and 1,106,762 sequence reads from cDNA and genomic fragments, respectively. They covered over 434 Mb of sequence in total and allowed us to detect 17,433 putative SNP. Among them, 384 were used to genotype two Advanced Intercross Lines (AIL) obtained from three quail lines differing for duration of tonic immobility. Despite the absence of genotyping for founder individuals in the analysis, the previously identified candidate region on chromosome 1 was refined and led to the identification of a candidate gene.ConclusionsThese data confirm the efficiency of transcript and AFLP-sequencing for SNP discovery in a non-model species, and its application to the fine mapping of a complex trait. Our results reveal a significant association of duration of tonic immobility with a genomic region comprising the DMD (dystrophin) gene. Further characterization of this candidate gene is needed to decipher its putative role in tonic immobility in Coturnix.


PLOS ONE | 2015

Optimal Threshold Determination for Interpreting Semantic Similarity and Particularity: Application to the Comparison of Gene Sets and Metabolic Pathways Using GO and ChEBI.

Charles Bettembourg; Christian Diot; Olivier Dameron

Background The analysis of gene annotations referencing back to Gene Ontology plays an important role in the interpretation of high-throughput experiments results. This analysis typically involves semantic similarity and particularity measures that quantify the importance of the Gene Ontology annotations. However, there is currently no sound method supporting the interpretation of the similarity and particularity values in order to determine whether two genes are similar or whether one gene has some significant particular function. Interpretation is frequently based either on an implicit threshold, or an arbitrary one (typically 0.5). Here we investigate a method for determining thresholds supporting the interpretation of the results of a semantic comparison. Results We propose a method for determining the optimal similarity threshold by minimizing the proportions of false-positive and false-negative similarity matches. We compared the distributions of the similarity values of pairs of similar genes and pairs of non-similar genes. These comparisons were performed separately for all three branches of the Gene Ontology. In all situations, we found overlap between the similar and the non-similar distributions, indicating that some similar genes had a similarity value lower than the similarity value of some non-similar genes. We then extend this method to the semantic particularity measure and to a similarity measure applied to the ChEBI ontology. Thresholds were evaluated over the whole HomoloGene database. For each group of homologous genes, we computed all the similarity and particularity values between pairs of genes. Finally, we focused on the PPAR multigene family to show that the similarity and particularity patterns obtained with our thresholds were better at discriminating orthologs and paralogs than those obtained using default thresholds. Conclusion We developed a method for determining optimal semantic similarity and particularity thresholds. We applied this method on the GO and ChEBI ontologies. Qualitative analysis using the thresholds on the PPAR multigene family yielded biologically-relevant patterns.


Animal Genetics | 2008

Quantitative real-time PCR primer design, cDNA amplification and sequence analysis from 22 genes mainly associated with lipid metabolism in Pekin (Anas platyrhynchos) and Muscovy (Cairina moschata) ducks.

Frédéric Hérault; E. Robert; Christian Diot

Few genomic tools are available in ducks. To produce some new resources, we have designed Pekin (Anas platyrhynchos) and Muscovy (Cairina moschata) duck-specific primers for 22 genes involved mainly in lipid metabolism, and to a lesser extent in carbohydrate metabolism and other functions. Primers were designed according to duck sequences when available and otherwise from the corresponding conserved regions in chicken and human sequences. These primers allowed quantitative RT-PCR amplification of RNA from Pekin and Muscovy ducks. Amplified cDNA products from both species were sequenced and were found to be very similar to chicken sequences (about 94%). This work provides additional genomic resources and polymorphism information for some genes in duck species and represents a first step towards gene expression analyses in Pekin and Muscovy ducks.


Biochemical Journal | 1996

CLONING AND CHARACTERIZATION OF THE 5' END AND PROMOTER REGION OF THE CHICKEN ACETYL-COA CARBOXYLASE GENE

C El Khadir-Mounier; N Le Fur; R S Powell; Christian Diot; P Langlois; J Mallard; Madeleine Douaire


FEBS Journal | 1996

Characterization of the Chicken Fatty Acid Synthase Gene 5′ Part and Promoter Region

Nathalie Le Fur; Catherine El Khadir‐Mounier; Rohan S. Powell; Christian Diot; Jacques Mallard; Madeleine Douaire


Productions Animales | 2013

La stéatose hépatique chez les palmipèdes

E. Baéza; Christel Marie-Etancelin; S. Davail; Christian Diot

Collaboration


Dive into the Christian Diot's collaboration.

Top Co-Authors

Avatar

Madeleine Douaire

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sandrine Lagarrigue

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christophe Klopp

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Charles Bettembourg

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Colette Désert

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

François Moreews

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Frédéric Hérault

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Frédéric Lecerf

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

M. J. Duclos

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge