Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian F. Beckmann is active.

Publication


Featured researches published by Christian F. Beckmann.


NeuroImage | 2004

Advances in functional and structural MR image analysis and implementation as FSL.

Stephen M. Smith; Mark Jenkinson; Mark W. Woolrich; Christian F. Beckmann; Tej Behrens; Heidi Johansen-Berg; Peter R. Bannister; M De Luca; I. Drobnjak; De Flitney; Rami K. Niazy; J Saunders; J Vickers; Yongyue Zhang; N. De Stefano; J.M. Brady; Paul M. Matthews

The techniques available for the interrogation and analysis of neuroimaging data have a large influence in determining the flexibility, sensitivity, and scope of neuroimaging experiments. The development of such methodologies has allowed investigators to address scientific questions that could not previously be answered and, as such, has become an important research area in its own right. In this paper, we present a review of the research carried out by the Analysis Group at the Oxford Centre for Functional MRI of the Brain (FMRIB). This research has focussed on the development of new methodologies for the analysis of both structural and functional magnetic resonance imaging data. The majority of the research laid out in this paper has been implemented as freely available software tools within FMRIBs Software Library (FSL).


Proceedings of the National Academy of Sciences of the United States of America | 2006

Consistent resting-state networks across healthy subjects

Jessica S. Damoiseaux; Serge A.R.B. Rombouts; Frederik Barkhof; P. Scheltens; Cornelis J. Stam; Stephen M. Smith; Christian F. Beckmann

Functional MRI (fMRI) can be applied to study the functional connectivity of the human brain. It has been suggested that fluctuations in the blood oxygenation level-dependent (BOLD) signal during rest reflect the neuronal baseline activity of the brain, representing the state of the human brain in the absence of goal-directed neuronal action and external input, and that these slow fluctuations correspond to functionally relevant resting-state networks. Several studies on resting fMRI have been conducted, reporting an apparent similarity between the identified patterns. The spatial consistency of these resting patterns, however, has not yet been evaluated and quantified. In this study, we apply a data analysis approach called tensor probabilistic independent component analysis to resting-state fMRI data to find coherencies that are consistent across subjects and sessions. We characterize and quantify the consistency of these effects by using a bootstrapping approach, and we estimate the BOLD amplitude modulation as well as the voxel-wise cross-subject variation. The analysis found 10 patterns with potential functional relevance, consisting of regions known to be involved in motor function, visual processing, executive functioning, auditory processing, memory, and the so-called default-mode network, each with BOLD signal changes up to 3%. In general, areas with a high mean percentage BOLD signal are consistent and show the least variation around the mean. These findings show that the baseline activity of the brain is consistent across subjects exhibiting significant temporal dynamics, with percentage BOLD signal change comparable with the signal changes found in task-related experiments.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Correspondence of the brain's functional architecture during activation and rest.

Stephen M. Smith; Peter T. Fox; Karla L. Miller; David C. Glahn; P. Mickle Fox; Clare E. Mackay; Nicola Filippini; Kate E. Watkins; Roberto Toro; Angela R. Laird; Christian F. Beckmann

Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is “at rest.” In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically “active” even when at “rest.”


Philosophical Transactions of the Royal Society B | 2005

Investigations into resting-state connectivity using independent component analysis

Christian F. Beckmann; Marilena DeLuca; Joseph T. Devlin; Stephen M. Smith

Inferring resting-state connectivity patterns from functional magnetic resonance imaging (fMRI) data is a challenging task for any analytical technique. In this paper, we review a probabilistic independent component analysis (PICA) approach, optimized for the analysis of fMRI data, and discuss the role which this exploratory technique can take in scientific investigations into the structure of these effects. We apply PICA to fMRI data acquired at rest, in order to characterize the spatio-temporal structure of such data, and demonstrate that this is an effective and robust tool for the identification of low-frequency resting-state patterns from data acquired at various different spatial and temporal resolutions. We show that these networks exhibit high spatial consistency across subjects and closely resemble discrete cortical functional networks such as visual cortical areas or sensory–motor cortex.


IEEE Transactions on Medical Imaging | 2004

Probabilistic independent component analysis for functional magnetic resonance imaging

Christian F. Beckmann; Stephen M. Smith

We present an integrated approach to probabilistic independent component analysis (ICA) for functional MRI (FMRI) data that allows for nonsquare mixing in the presence of Gaussian noise. In order to avoid overfitting, we employ objective estimation of the amount of Gaussian noise through Bayesian analysis of the true dimensionality of the data, i.e., the number of activation and non-Gaussian noise sources. This enables us to carry out probabilistic modeling and achieves an asymptotically unique decomposition of the data. It reduces problems of interpretation, as each final independent component is now much more likely to be due to only one physical or physiological process. We also describe other improvements to standard ICA, such as temporal prewhitening and variance normalization of timeseries, the latter being particularly useful in the context of dimensionality reduction when weak activation is present. We discuss the use of prior information about the spatiotemporal nature of the source processes, and an alternative-hypothesis testing approach for inference, using Gaussian mixture models. The performance of our approach is illustrated and evaluated on real and artificial FMRI data, and compared to the spatio-temporal accuracy of results obtained from classical ICA and GLM analyses.


NeuroImage | 2009

Bayesian analysis of neuroimaging data in FSL.

Mark W. Woolrich; Saâd Jbabdi; Brian Patenaude; Michael A. Chappell; Salima Makni; Timothy E. J. Behrens; Christian F. Beckmann; Mark Jenkinson; Stephen M. Smith

Typically in neuroimaging we are looking to extract some pertinent information from imperfect, noisy images of the brain. This might be the inference of percent changes in blood flow in perfusion FMRI data, segmentation of subcortical structures from structural MRI, or inference of the probability of an anatomical connection between an area of cortex and a subthalamic nucleus using diffusion MRI. In this article we will describe how Bayesian techniques have made a significant impact in tackling problems such as these, particularly in regards to the analysis tools in the FMRIB Software Library (FSL). We shall see how Bayes provides a framework within which we can attempt to infer on models of neuroimaging data, while allowing us to incorporate our prior belief about the brain and the neuroimaging equipment in the form of biophysically informed or regularising priors. It allows us to extract probabilistic information from the data, and to probabilistically combine information from multiple modalities. Bayes can also be used to not only compare and select between models of different complexity, but also to infer on data using committees of models. Finally, we mention some analysis scenarios where Bayesian methods are impractical, and briefly discuss some practical approaches that we have taken in these cases.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele.

Nicola Filippini; Bradley J. MacIntosh; Morgan Hough; Guy M. Goodwin; Giovanni B. Frisoni; Stephen M. Smith; Paul M. Matthews; Christian F. Beckmann; Clare E. Mackay

The APOE ε4 allele is a risk factor for late-life pathological changes that is also associated with anatomical and functional brain changes in middle-aged and elderly healthy subjects. We investigated structural and functional effects of the APOE polymorphism in 18 young healthy APOE ε4-carriers and 18 matched noncarriers (age range: 20–35 years). Brain activity was studied both at rest and during an encoding memory paradigm using blood oxygen level-dependent fMRI. Resting fMRI revealed increased “default mode network” (involving retrosplenial, medial temporal, and medial-prefrontal cortical areas) coactivation in ε4-carriers relative to noncarriers. The encoding task produced greater hippocampal activation in ε4-carriers relative to noncarriers. Neither result could be explained by differences in memory performance, brain morphology, or resting cerebral blood flow. The APOE ε4 allele modulates brain function decades before any clinical or neurophysiological expression of neurodegenerative processes.


NeuroImage | 2004

Multilevel linear modelling for FMRI group analysis using Bayesian inference.

Mark W. Woolrich; Behrens Tej.; Christian F. Beckmann; Mark Jenkinson; Stephen M. Smith

Functional magnetic resonance imaging studies often involve the acquisition of data from multiple sessions and/or multiple subjects. A hierarchical approach can be taken to modelling such data with a general linear model (GLM) at each level of the hierarchy introducing different random effects variance components. Inferring on these models is nontrivial with frequentist solutions being unavailable. A solution is to use a Bayesian framework. One important ingredient in this is the choice of prior on the variance components and top-level regression parameters. Due to the typically small numbers of sessions or subjects in neuroimaging, the choice of prior is critical. To alleviate this problem, we introduce to neuroimage modelling the approach of reference priors, which drives the choice of prior such that it is noninformative in an information-theoretic sense. We propose two inference techniques at the top level for multilevel hierarchies (a fast approach and a slower more accurate approach). We also demonstrate that we can infer on the top level of multilevel hierarchies by inferring on the levels of the hierarchy separately and passing summary statistics of a noncentral multivariate t distribution between them.


Nature | 2012

An anatomically comprehensive atlas of the adult human brain transcriptome

Michael Hawrylycz; Ed Lein; Angela L. Guillozet-Bongaarts; Elaine H. Shen; Lydia Ng; Jeremy A. Miller; Louie N. van de Lagemaat; Kimberly A. Smith; Amanda Ebbert; Zackery L. Riley; Chris Abajian; Christian F. Beckmann; Amy Bernard; Darren Bertagnolli; Andrew F. Boe; Preston M. Cartagena; M. Mallar Chakravarty; Mike Chapin; Jimmy Chong; Rachel A. Dalley; Barry Daly; Chinh Dang; Suvro Datta; Nick Dee; Tim Dolbeare; Vance Faber; David Feng; David Fowler; Jeff Goldy; Benjamin W. Gregor

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography—the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.


Frontiers in Systems Neuroscience | 2010

Advances and pitfalls in the analysis and interpretation of resting-state FMRI data.

David M. Cole; Stephen M. Smith; Christian F. Beckmann

The last 15 years have witnessed a steady increase in the number of resting-state functional neuroimaging studies. The connectivity patterns of multiple functional, distributed, large-scale networks of brain dynamics have been recognised for their potential as useful tools in the domain of systems and other neurosciences. The application of functional connectivity methods to areas such as cognitive psychology, clinical diagnosis and treatment progression has yielded promising preliminary results, but is yet to be fully realised. This is due, in part, to an array of methodological and interpretative issues that remain to be resolved. We here present a review of the methods most commonly applied in this rapidly advancing field, such as seed-based correlation analysis and independent component analysis, along with examples of their use at the individual subject and group analysis levels and a discussion of practical and theoretical issues arising from this data ‘explosion’. We describe the similarities and differences across these varied statistical approaches to processing resting-state functional magnetic resonance imaging signals, and conclude that further technical optimisation and experimental refinement is required in order to fully delineate and characterise the gross complexity of the human neural functional architecture.

Collaboration


Dive into the Christian F. Beckmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan K. Buitelaar

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maarten Mennes

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Franke

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge