Christian F. Hermanns
Free University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian F. Hermanns.
Journal of Physical Chemistry Letters | 2012
Matthias Bernien; Dennis Wiedemann; Christian F. Hermanns; Alex Krüger; Daniela Rolf; Wolfgang Kroener; Paul Müller; Andreas Grohmann; W. Kuch
Spin-state switching of transition-metal complexes (spin crossover) is sensitive to a variety of tiny perturbations. It is often found to be suppressed for molecules directly adsorbed on solid surfaces. We present X-ray absorption spectroscopy measurements of a submonolayer of [Fe(II)(NCS)2L] (L: 1-{6-[1,1-di(pyridin-2-yl)ethyl]-pyridin-2-yl}-N,N-dimethylmethanamine) deposited on a highly oriented pyrolytic graphite substrate in ultrahigh vacuum. These molecules undergo a thermally induced, fully reversible, gradual spin crossover with a transition temperature of T1/2 = 235(6) K and a transition width of ΔT80 = 115(8) K. Our results show that by using a carbon-based substrate the spin-crossover behavior can be preserved even for molecules that are in direct contact with a solid surface.
Chemistry: A European Journal | 2013
Thiruvancheril G. Gopakumar; Matthias Bernien; Holger Naggert; Francesca Matino; Christian F. Hermanns; Alexander Bannwarth; Svenja Mühlenberend; Alex Krüger; Dennis Krüger; Fabian Nickel; Waldemar Walter; Richard Berndt; W. Kuch; Felix Tuczek
Submono-, mono- and multilayers of the Fe(II) spin-crossover (SCO) complex [Fe(bpz)2 (phen)] (bpz=dihydrobis(pyrazolyl)borate, phen=1,10-phenanthroline) have beenprepared by vacuum deposition on Au(111) substrates and investigated with near edge X-ray absorption fine structure (NEXAFS) spectroscopy and scanning tunneling microscopy (STM). As evidenced by NEXAFS, molecules of the second layer exhibit a thermal spin crossover transition, although with a more gradual characteristics than in the bulk. For mono- and submonolayers of [Fe(bpz)2 (phen)] deposited on Au(111) substrates at room temperature both NEXAFS and STM indicate a dissociation of [Fe(bpz)2 (phen)] on Au(111) into four-coordinate complexes, [Fe(bpz)2 ], and phen molecules. Keeping the gold substrate at elevated temperatures ordered monolayers of intact molecules of [Fe(bpz)2 (phen)] are formed which can be spin-switched by electron-induced excited spin-state trapping (ELIESST).
Physical Review Letters | 2012
Tobias R. Umbach; Matthias Bernien; Christian F. Hermanns; Alex Krüger; V. Sessi; I. Fernández-Torrente; P. Stoll; J. I. Pascual; Katharina J. Franke; W. Kuch
The magnetic state and magnetic coupling of individual atoms in nanoscale structures relies on a delicate balance between different interactions with the atomic-scale surroundings. Using scanning tunneling microscopy, we resolve the self-assembled formation of highly ordered bilayer structures of Fe atoms and organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe atoms are encaged in a three-dimensional coordination motif by three T4PT molecules in the surface plane and an additional T4PT unit on top. Within this crystal field, the Fe atoms retain a magnetic ground state with easy-axis anisotropy, as evidenced by x-ray absorption spectroscopy and x-ray magnetic circular dichroism. The magnetization curves reveal the existence of ferromagnetic coupling between the Fe centers.
ACS Nano | 2015
Matthias Bernien; Holger Naggert; Lucas M. Arruda; Lalminthang Kipgen; Fabian Nickel; Jorge Miguel; Christian F. Hermanns; Alex Krüger; Dennis Krüger; E. Schierle; E. Weschke; Felix Tuczek; W. Kuch
Spin crossover (SCO) complexes possess a bistable spin state that reacts sensitively to changes in temperature or excitation with light. These effects have been well investigated in solids and solutions, while technological applications require the immobilization and contacting of the molecules at surfaces, which often results in the suppression of the SCO. We report on the thermal and light-induced SCO of [Fe(bpz)2phen] molecules in direct contact with a highly oriented pyrolytic graphite surface. We are able to switch on the magnetic moment of the molecules by illumination with green light at T = 6 K, and off by increasing the temperature to 65 K. The light-induced switching process is highly efficient leading to a complete spin conversion from the low-spin to the high-spin state within a submonolayer of molecules. [Fe(bpz)2phen] complexes immobilized on weakly interacting graphite substrates are thus promising candidates to realize the vision of an optically controlled molecular logic unit for spintronic devices.
Advanced Materials | 2013
Christian F. Hermanns; Kartick Tarafder; Matthias Bernien; Alex Krüger; Yin-Ming Chang; Peter M. Oppeneer; W. Kuch
X-ray magnetic circular dichroism (XMCD) measurements and density functional theory (DFT)+U calculations reveal an unexpected antiferromagnetic coupling between physisorbed paramagnetic Co-porphyrin molecules and a Ni surface, separated by a graphene layer. A positive magnetization at the Ni substrate atoms is mediated by graphene and induces a negative one at the Co site, despite only a very small overlap between macrocyclic π and graphene pz -orbitals.
Physical Review B | 2013
Heike C. Herper; Matthias Bernien; Sumanta Bhandary; Christian F. Hermanns; Alex Krüger; Jorge Miguel Soriano; C. Weis; Carolin Schmitz-Antoniak; B. Krumme; D. Bovenschen; C. Tieg; Biplab Sanyal; E. Weschke; Constantin Czekelius; H. Wende; Olle Eriksson; W. Kuch
The structural and magnetic properties of Fe octaethylporphyrin molecules on Cu(001) have been investigated by means of density functional theory (DFT) methods and x-ray absorption spectroscopy. The molecules have been adsorbed on the bare metal surface and on an oxygen-covered surface, which shows a root 2 x 2 root 2R45 degrees reconstruction. In order to allow for a direct comparison between magnetic moments obtained from sum-rule analysis and DFT, we calculate the spin dipolar term 7T (theta), which is also important in view of the magnetic anisotropy of the molecule. The measured x-ray magnetic circular dichroism shows a strong dependence on the photon incidence angle, which we could relate to a huge value of 7T (theta), e. g., on Cu(001), 7T (theta) amounts to -2.07 mu(B) for normal incidence leading to a reduction of the effective spin moment (m(s) + 7T (theta)). Calculations have also been performed to study the influence of possible ligands such as Cl and O atoms on the magnetic properties of the molecule and the interaction between molecule and surface because the experimental spectra display a clear dependence on the ligand, which is used to stabilize the molecule in the gas phase. Both types of ligands weaken the hybridization between surface and porphyrin molecule and change the magnetic spin state of the molecule, but the changes in the x-ray absorption are clearly related to residual Cl ligands.
Journal of Physics: Condensed Matter | 2012
Christian F. Hermanns; Matthias Bernien; Alex Krüger; Jorge Miguel; W. Kuch
Using x-ray absorption spectroscopy, we demonstrate that the electronic properties of Co-octaethylporphyrin (CoOEP) molecules on oxygen-covered ultrathin Ni films can be reversibly manipulated by a chemical stimulus. This is achieved by adsorption of nitrogen monoxide (NO), leading to the formation of a NO-CoOEP nitrosyl complex, and subsequent thermal desorption of the NO from the Co ions. The integration of the absorption spectra of the Co L(2,3) edges reveals a partial oxidation of the Co ions after dosing with NO compared to the pristine sample, for which a valency of 2+ and a low-spin state of the Co ions can be deduced from the Co L(2,3) XAS line shape. By means of x-ray magnetic circular dichroism the magnetic moments of the Co ions were found to be coupled parallel to the magnetization of the Ni films across the intermediate layer of atomic oxygen, before and after NO uptake.
Journal of Chemical Physics | 2012
Chunsheng Guo; Lili Sun; Klaus Hermann; Christian F. Hermanns; Matthias Bernien; W. Kuch
Metal octaethylporphyrins (M-OEP), M-N(4)C(20)H(4)(C(2)H(5))(8), adsorbed at a metallic substrate are promising candidates to provide spin dependent electric transport. Despite these systems having been studied extensively by experiment, details of the adsorbate geometry and surface binding are still unclear. We have carried out density functional theory calculations for cobalt octaethyl porphyrin (Co-OEP) adsorbate at clean and oxygen-covered Ni(100) surfaces as well as for the free Co-OEP molecule where equilibrium structures were obtained by corresponding energy optimizations. These geometries were then used in calculations of Co-OEP carbon and nitrogen 1s core excitations yielding theoretical excitation spectra to be compared with corresponding K-edge x-ray absorption fine structure (NEXAFS) measurements. The experimental NEXAFS spectra near the carbon K-edge of Co-OEP bulk material show large intensity close to the ionization threshold and a triple-peak structure at lower energies, which can be reproduced by the calculations on free Co-OEP. The experimental nitrogen K-edge spectra of adsorbed Co-OEP layers exhibit always a double-peak structure below ionization threshold, independent of the layer thickness. The peaks are shifted slightly and their separation varies with adsorbate-substrate distance. This can be explained by hybridization of N 2p with corresponding 3d contributions of the Ni substrate in the excited final state orbitals as a result of adsorbate-substrate binding via N-Ni bond formation.
Journal of Physical Chemistry Letters | 2011
Jorge Miguel; Christian F. Hermanns; Matthias Bernien; Alex Krüger; W. Kuch
Journal of Materials Chemistry | 2012
Julieta I. Paez; Verónica Brunetti; Miriam C. Strumia; Tobias Becherer; Tihomir Solomun; Jorge Miguel; Christian F. Hermanns; Marcelo Calderón; Rainer Haag