Christian F. Roos
University of Innsbruck
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian F. Roos.
Nature | 2004
M. Riebe; Hartmut Häffner; Christian F. Roos; Wolfgang Hänsel; J. Benhelm; G. Lancaster; T. Körber; Christoph Becher; F. Schmidt-Kaler; Daniel F. V. James; R. Blatt
Teleportation of a quantum state encompasses the complete transfer of information from one particle to another. The complete specification of the quantum state of a system generally requires an infinite amount of information, even for simple two-level systems (qubits). Moreover, the principles of quantum mechanics dictate that any measurement on a system immediately alters its state, while yielding at most one bit of information. The transfer of a state from one system to another (by performing measurements on the first and operations on the second) might therefore appear impossible. However, it has been shown that the entangling properties of quantum mechanics, in combination with classical communication, allow quantum-state teleportation to be performed. Teleportation using pairs of entangled photons has been demonstrated, but such techniques are probabilistic, requiring post-selection of measured photons. Here, we report deterministic quantum-state teleportation between a pair of trapped calcium ions. Following closely the original proposal, we create a highly entangled pair of ions and perform a complete Bell-state measurement involving one ion from this pair and a third source ion. State reconstruction conditioned on this measurement is then performed on the other half of the entangled pair. The measured fidelity is 75%, demonstrating unequivocally the quantum nature of the process.
Nature | 2003
F. Schmidt-Kaler; Hartmut Häffner; M. Riebe; S. Gulde; G. Lancaster; T. Deuschle; Christoph Becher; Christian F. Roos; Jürgen Eschner; R. Blatt
Quantum computers have the potential to perform certain computational tasks more efficiently than their classical counterparts. The Cirac–Zoller proposal for a scalable quantum computer is based on a string of trapped ions whose electronic states represent the quantum bits of information (or qubits). In this scheme, quantum logical gates involving any subset of ions are realized by coupling the ions through their collective quantized motion. The main experimental step towards realizing the scheme is to implement the controlled-NOT (CNOT) gate operation between two individual ions. The CNOT quantum logical gate corresponds to the XOR gate operation of classical logic that flips the state of a target bit conditioned on the state of a control bit. Here we implement a CNOT quantum gate according to the Cirac–Zoller proposal. In our experiment, two 40Ca+ ions are held in a linear Paul trap and are individually addressed using focused laser beams; the qubits are represented by superpositions of two long-lived electronic states. Our work relies on recently developed precise control of atomic phases and the application of composite pulse sequences adapted from nuclear magnetic resonance techniques.
Nature | 2011
Julio T. Barreiro; Markus Müller; Philipp Schindler; Daniel Nigg; Thomas Monz; M. Chwalla; Markus Hennrich; Christian F. Roos; P. Zoller; R. Blatt
The control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating quantum systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored. Here we realize an experimental toolbox for simulating an open quantum system with up to five quantum bits (qubits). Using a quantum computing architecture with trapped ions, we combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We illustrate our ability to engineer the open-system dynamics through the dissipative preparation of entangled states, the simulation of coherent many-body spin interactions, and the quantum non-demolition measurement of multi-qubit observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system quantum simulation and computation.
Nature Physics | 2008
J. Benhelm; Gerhard Kirchmair; Christian F. Roos; R. Blatt
Like their classical counterparts, quantum computers can, in theory, cope with imperfections—provided that these are small enough. The regime of fault-tolerant quantum computing has now been reached for a system based on trapped ions, in which a gate operation for entangling qubits has been implemented with a fidelity exceeding 99%. Today, ion traps are among the most promising physical systems for constructing a quantum device harnessing the computing power inherent in the laws of quantum physics1,2. For the implementation of arbitrary operations, a quantum computer requires a universal set of quantum logic gates. As in classical models of computation, quantum error correction techniques3,4 enable rectification of small imperfections in gate operations, thus enabling perfect computation in the presence of noise. For fault-tolerant computation5, it is believed that error thresholds ranging between 10−4 and 10−2 will be required—depending on the noise model and the computational overhead for realizing the quantum gates6,7,8—but so far all experimental implementations have fallen short of these requirements. Here, we report on a Molmer–Sorensen-type gate operation9,10 entangling ions with a fidelity of 99.3(1)%. The gate is carried out on a pair of qubits encoded in two trapped calcium ions using an amplitude-modulated laser beam interacting with both ions at the same time. A robust gate operation, mapping separable states onto maximally entangled states is achieved by adiabatically switching the laser–ion coupling on and off. We analyse the performance of a single gate and concatenations of up to 21 gate operations.
Science | 2011
B. P. Lanyon; C. Hempel; Daniel Nigg; Markus Müller; R. Gerritsma; F. Zähringer; Philipp Schindler; Julio T. Barreiro; M. Rambach; Gerhard Kirchmair; Markus Hennrich; P. Zoller; R. Blatt; Christian F. Roos
A series of trapped calcium ions was used to simulate the complex dynamics of an interacting spin system. A digital quantum simulator is an envisioned quantum device that can be programmed to efficiently simulate any other local system. We demonstrate and investigate the digital approach to quantum simulation in a system of trapped ions. With sequences of up to 100 gates and 6 qubits, the full time dynamics of a range of spin systems are digitally simulated. Interactions beyond those naturally present in our simulator are accurately reproduced, and quantitative bounds are provided for the overall simulation quality. Our results demonstrate the key principles of digital quantum simulation and provide evidence that the level of control required for a full-scale device is within reach.
Nature | 2014
Petar Jurcevic; B. P. Lanyon; Philipp Hauke; C. Hempel; P. Zoller; R. Blatt; Christian F. Roos
The key to explaining and controlling a range of quantum phenomena is to study how information propagates around many-body systems. Quantum dynamics can be described by particle-like carriers of information that emerge in the collective behaviour of the underlying system, the so-called quasiparticles. These elementary excitations are predicted to distribute quantum information in a fashion determined by the system’s interactions. Here we report quasiparticle dynamics observed in a quantum many-body system of trapped atomic ions. First, we observe the entanglement distributed by quasiparticles as they trace out light-cone-like wavefronts. Second, using the ability to tune the interaction range in our system, we observe information propagation in an experimental regime where the effective-light-cone picture does not apply. Our results will enable experimental studies of a range of quantum phenomena, including transport, thermalization, localization and entanglement growth, and represent a first step towards a new quantum-optic regime of engineered quasiparticles with tunable nonlinear interactions.
Nature | 2006
Christian F. Roos; M. Chwalla; Kyoung-Whan Kim; M. Riebe; R. Blatt
Entanglement is recognized as a key resource for quantum computation and quantum cryptography. For quantum metrology, the use of entangled states has been discussed and demonstrated as a means of improving the signal-to-noise ratio. In addition, entangled states have been used in experiments for efficient quantum state detection and for the measurement of scattering lengths. In quantum information processing, manipulation of individual quantum bits allows for the tailored design of specific states that are insensitive to the detrimental influences of an environment. Such ‘decoherence-free subspaces’ (ref. 10) protect quantum information and yield significantly enhanced coherence times. Here we use a decoherence-free subspace with specifically designed entangled states to demonstrate precision spectroscopy of a pair of trapped Ca+ ions; we obtain the electric quadrupole moment, which is of use for frequency standard applications. We find that entangled states are not only useful for enhancing the signal-to-noise ratio in frequency measurements—a suitably designed pair of atoms also allows clock measurements in the presence of strong technical noise. Our technique makes explicit use of non-locality as an entanglement property and provides an approach for ‘designed’ quantum metrology.
Nature Physics | 2010
Julio T. Barreiro; Philipp Schindler; Otfried Gühne; Thomas Monz; M. Chwalla; Christian F. Roos; Markus Hennrich; R. Blatt
A noisy environment is used to study the dynamics of a four-trapped-ion entangled state. The study shows that entanglement properties such as distillability and separability can be altered by controlling the degree of dephasing. The results provide an important insight into the nature of multiparticle entanglement.
Physical Review Letters | 2006
M. Riebe; K. Kim; Philipp Schindler; Thomas Monz; P. O. Schmidt; T. K. Körber; Wolfgang Hänsel; H. Häffner; Christian F. Roos; R. Blatt
A crucial building block for quantum information processing with trapped ions is a controlled-NOT quantum gate. In this Letter, two different sequences of laser pulses implementing such a gate operation are analyzed using quantum process tomography. Fidelities of up to 92.6(6)% are achieved for single-gate operations and up to 83.4(8)% for two concatenated gate operations. By process tomography we assess the performance of the gates for different experimental realizations and demonstrate the advantage of amplitude-shaped laser pulses over simple square pulses. We also investigate whether the performance of concatenated gates can be inferred from the analysis of the single gates.
New Journal of Physics | 2011
Markus Müller; Klemens Hammerer; Yan-Li Zhou; Christian F. Roos; P. Zoller
In a recent experiment, Barreiro et al. demonstrated the fundamental building blocks of an open-system quantum simulator with trapped ions (Nature 470, 486 (2011)). Using up to ve ions, single- and multi-qubit entangling gate operations were combined with optical pumping in stroboscopic sequences. This enabled the implementation of both coherent many-body dynamics as well as dissipative processes by controlling the coupling of the system to an articial, suitably tailored environment. This engineering was illustrated by the dissipative preparation of entangled two- and four-qubit states, the simulation of coherent four-body spin interactions and the quantum non-demolition measurement of a multi-qubit stabilizer operator. In the present paper, we present the theoretical framework of this gate-based (digital) simulation approach for open-system dynamics with trapped ions. In addition, we discuss how within this simulation approach minimal instances of spin models of interest in the context of topological quantum computing and condensed matter physics can be realized in state-of-the-art linear ion-trap quantum computing architectures. We outline concrete simulation schemes for Kitaevs toric code Hamiltonian and a recently suggested color code model. The presented simulation protocols can be adapted to scalable and two-dimensional ion-trap architectures, which are currently under development.