Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Fork is active.

Publication


Featured researches published by Christian Fork.


Free Radical Biology and Medicine | 2012

Role of Nox4 in murine models of kidney disease.

Andrea Babelova; Despina Avaniadi; Oliver Jung; Christian Fork; Janet Beckmann; Judith Kosowski; Norbert Weissmann; Narayana Anilkumar; Ajay M. Shah; Liliana Schaefer; Katrin Schröder; Ralf P. Brandes

Nox4 is a hydrogen peroxide-producing NADPH oxidase highly expressed in the kidney which has been linked to epithelial cell injury and diabetic-induced cellular dysfunction in cultured cells. The role of the enzyme for renal pathology in vivo, however, is unclear. To address this, three experimental animal models of renal injury (streptozotocin diabetes I, unilateral ureteral ligation (UUO), and 5/6 nephrectomy (5/6Nx)) were studied in either Nox4-inducible (Nox4(*/*)) or constitutive knockout (Nox4(-/-)) mice. Nox4 contributed more than 80% of diphenylene iodonium-sensitive H(2)O(2) formation of freshly isolated tubules determined by Amplex Red assay. In streptozotocin diabetes, acute deletion of Nox4 by tamoxifen-activated cre-recombinase increased albuminuria, whereas matrix deposition was similar between WT and Nox4(*/*) mice. Interestingly, renal Nox4 expression, mainly localized to tubular cells, decreased in the course of diabetes and this was not associated with a compensatory upregulation of Nox1 or Nox2. In the UUO model, renal expression of ICAM1, connective tissue growth factor, and fibronectin were higher in kidneys of Nox4(*/*) than control mice. Also in this model, levels of Nox4 decreased in the course of the disease. In the 5/6Nx model, which was performed in SV129 and SV129-Nox4(-/-) mice, no difference in the development of hypertension and albuminuria was found between the strains. Collectively, the first in vivo data of the kidney do not support the view that Nox4 is a main driver of renal disease. It rather appears that under specific conditions Nox4 may even slightly limit injury and disease progression.


European Heart Journal | 2015

The NADPH oxidase Nox4 has anti-atherosclerotic functions

Christoph Schürmann; Flavia Rezende; Christoph Kruse; Yakub Yasar; Oliver Löwe; Christian Fork; Bart van de Sluis; Rolf Bremer; Norbert Weissmann; Ajay M. Shah; Hanjoong Jo; Ralf P. Brandes; Katrin Schröder

AIMS Oxidative stress is thought to be a risk for cardiovascular disease and NADPH oxidases of the Nox family are important producers of reactive oxygen species. Within the Nox family, the NADPH oxidase Nox4 has a unique position as it is constitutively active and produces H2O2 rather than [Formula: see text] . Nox4 is therefore incapable of scavenging NO and its low constitutive H2O2 production might even be beneficial. We hypothesized that Nox4 acts as an endogenous anti-atherosclerotic enzyme. METHODS AND RESULTS Tamoxifen-induced Nox4-knockout mice were crossed with ApoE⁻/⁻ mice and spontaneous atherosclerosis under regular chow as well as accelerated atherosclerosis in response to partial carotid artery ligation under high-fat diet were determined. Deletion of Nox4 resulted in increased atherosclerosis formation in both models. Mechanistically, pro-atherosclerotic and pro-inflammatory changes in gene expression were observed prior to plaque development. Moreover, inhibition of Nox4 or deletion of the enzyme in the endothelium but not in macrophages resulted in increased adhesion of macrophages to the endothelial surface. CONCLUSIONS The H2O2-producing NADPH oxidase Nox4 is an endogenous anti-atherosclerotic enzyme. Nox4 inhibitors, currently under clinical evaluation, should be carefully monitored for cardiovascular side-effects.


PLOS ONE | 2013

Activation of Rac-1 and RhoA Contributes to Podocyte Injury in Chronic Kidney Disease

Andrea Babelova; Felix Jansen; Kerstin Sander; Matthias Löhn; Liliana Schäfer; Christian Fork; Hartmut Ruetten; Oliver Plettenburg; Holger Stark; Christoph Daniel; Kerstin Amann; Hermann Pavenstädt; Oliver Jung; Ralf P. Brandes

Rho-family GTPases like RhoA and Rac-1 are potent regulators of cellular signaling that control gene expression, migration and inflammation. Activation of Rho-GTPases has been linked to podocyte dysfunction, a feature of chronic kidney diseases (CKD). We investigated the effect of Rac-1 and Rho kinase (ROCK) inhibition on progressive renal failure in mice and studied the underlying mechanisms in podocytes. SV129 mice were subjected to 5/6-nephrectomy which resulted in arterial hypertension and albuminuria. Subgroups of animals were treated with the Rac-1 inhibitor EHT1846, the ROCK inhibitor SAR407899 and the ACE inhibitor Ramipril. Only Ramipril reduced hypertension. In contrast, all inhibitors markedly attenuated albumin excretion as well as glomerular and tubulo-interstitial damage. The combination of SAR407899 and Ramipril was more effective in preventing albuminuria than Ramipril alone. To study the involved mechanisms, podocytes were cultured from SV129 mice and exposed to static stretch in the Flexcell device. This activated RhoA and Rac-1 and led via TGFβ to apoptosis and a switch of the cells into a more mesenchymal phenotype, as evident from loss of WT-1 and nephrin and induction of α-SMA and fibronectin expression. Rac-1 and ROCK inhibition as well as blockade of TGFβ dramatically attenuated all these responses. This suggests that Rac-1 and RhoA are mediators of podocyte dysfunction in CKD. Inhibition of Rho-GTPases may be a novel approach for the treatment of CKD.


Circulation | 2017

Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic Function

Matthias S. Leisegang; Christian Fork; Ivana Josipovic; Florian Martin Richter; Jens Preussner; Jiong Hu; Matthew J. Miller; Jeremy Epah; Patrick Hofmann; Stefan Günther; Franziska Moll; Chanil Valasarajan; Juliana Heidler; Yuliya Ponomareva; Thomas M. Freiman; Lars Maegdefessel; Karl H. Plate; Michel Mittelbronn; Shizuka Uchida; Carsten Künne; Konstantinos Stellos; Ralph T. Schermuly; Norbert Weissmann; Kavi Devraj; Ilka Wittig; Reinier A. Boon; Stefanie Dimmeler; Soni Savai Pullamsetti; Mario Looso; Francis J. Miller

Background: The angiogenic function of endothelial cells is regulated by numerous mechanisms, but the impact of long noncoding RNAs (lncRNAs) has hardly been studied. We set out to identify novel and functionally important endothelial lncRNAs. Methods: Epigenetically controlled lncRNAs in human umbilical vein endothelial cells were searched by exon-array analysis after knockdown of the histone demethylase JARID1B. Molecular mechanisms were investigated by RNA pulldown and immunoprecipitation, mass spectrometry, microarray, several knockdown approaches, CRISPR-Cas9, assay for transposase-accessible chromatin sequencing, and chromatin immunoprecipitation in human umbilical vein endothelial cells. Patient samples from lung and tumors were studied for MANTIS expression. Results: A search for epigenetically controlled endothelial lncRNAs yielded lncRNA n342419, here termed MANTIS, as the most strongly regulated lncRNA. Controlled by the histone demethylase JARID1B, MANTIS was downregulated in patients with idiopathic pulmonary arterial hypertension and in rats treated with monocrotaline, whereas it was upregulated in carotid arteries of Macaca fascicularis subjected to atherosclerosis regression diet, and in endothelial cells isolated from human glioblastoma patients. CRISPR/Cas9-mediated deletion or silencing of MANTIS with small interfering RNAs or GapmeRs inhibited angiogenic sprouting and alignment of endothelial cells in response to shear stress. Mechanistically, the nuclear-localized MANTIS lncRNA interacted with BRG1, the catalytic subunit of the switch/sucrose nonfermentable chromatin-remodeling complex. This interaction was required for nucleosome remodeling by keeping the ATPase function of BRG1 active. Thereby, the transcription of key endothelial genes such as SOX18, SMAD6, and COUP-TFII was regulated by ensuring efficient RNA polymerase II machinery binding. Conclusion: MANTIS is a differentially regulated novel lncRNA facilitating endothelial angiogenic function.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

Epigenetic Regulation of Angiogenesis by JARID1B-Induced Repression of HOXA5

Christian Fork; Lunda Gu; Juliane Hitzel; Ivana Josipovic; Jiong Hu; Michael SzeKa Wong; Yuliya Ponomareva; Mareike Albert; Sandra U. Schmitz; Shizuka Uchida; Ingrid Fleming; Kristian Helin; Dieter Steinhilber; Matthias S. Leisegang; Ralf P. Brandes

Objective— Altering endothelial biology through epigenetic modifiers is an attractive novel concept, which is, however, just in its beginnings. We therefore set out to identify chromatin modifiers important for endothelial gene expression and contributing to angiogenesis. Approach and Results— To identify chromatin modifying enzymes in endothelial cells, histone demethylases were screened by microarray and polymerase chain reaction. The histone 3 lysine 4 demethylase JARID1B was identified as a highly expressed enzyme at the mRNA and protein levels. Knockdown of JARID1B by shRNA in human umbilical vein endothelial cells attenuated cell migration, angiogenic sprouting, and tube formation. Similarly, pharmacological inhibition and overexpression of a catalytic inactive JARID1B mutant reduced the angiogenic capacity of human umbilical vein endothelial cells. To identify the in vivo relevance of JARID1B in the vascular system, Jarid1b knockout mice were studied. As global knockout results in increased mortality and developmental defects, tamoxifen-inducible and endothelial-specific knockout mice were generated. Acute knockout of Jarid1b attenuated retinal angiogenesis and endothelial sprout outgrowth from aortic segments. To identify the underlying mechanism, a microarray experiment was performed, which led to the identification of the antiangiogenic transcription factor HOXA5 to be suppressed by JARID1B. Importantly, downregulation or inhibition of JARID1B, but not of JARID1A and JARID1C, induced HOXA5 expression in human umbilical vein endothelial cells. Consistently, chromatin immunoprecipitation revealed that JARID1B occupies and reduces the histone 3 lysine 4 methylation levels at the HOXA5 promoter, demonstrating a direct function of JARID1B in endothelial HOXA5 gene regulation. Conclusions— JARID1B, by suppressing HOXA5, maintains the endothelial angiogenic capacity in a demethylase-dependent manner.


International Journal of Molecular Sciences | 2017

Biglycan- and Sphingosine Kinase-1 Signaling Crosstalk Regulates the Synthesis of Macrophage Chemoattractants

Louise Tzung-Harn Hsieh; Madalina-Viviana Nastase; Heiko Roedig; Jinyang Zeng-Brouwers; Chiara Poluzzi; Stephanie Schwalm; Christian Fork; Claudia Tredup; Ralf P. Brandes; Malgorzata Wygrecka; Andrea Huwiler; Josef Pfeilschifter; Liliana Schaefer

In its soluble form, the extracellular matrix proteoglycan biglycan triggers the synthesis of the macrophage chemoattractants, chemokine (C-C motif) ligand CCL2 and CCL5 through selective utilization of Toll-like receptors (TLRs) and their adaptor molecules. However, the respective downstream signaling events resulting in biglycan-induced CCL2 and CCL5 production have not yet been defined. Here, we show that biglycan stimulates the production and activation of sphingosine kinase 1 (SphK1) in a TLR4- and Toll/interleukin (IL)-1R domain-containing adaptor inducing interferon (IFN)-β (TRIF)-dependent manner in murine primary macrophages. We provide genetic and pharmacological proof that SphK1 is a crucial downstream mediator of biglycan-triggered CCL2 and CCL5 mRNA and protein expression. This is selectively driven by biglycan/SphK1-dependent phosphorylation of the nuclear factor NF-κB p65 subunit, extracellular signal-regulated kinase (Erk)1/2 and p38 mitogen-activated protein kinases. Importantly, in vivo overexpression of soluble biglycan causes Sphk1-dependent enhancement of renal CCL2 and CCL5 and macrophage recruitment into the kidney. Our findings describe the crosstalk between biglycan- and SphK1-driven extracellular matrix- and lipid-signaling. Thus, SphK1 may represent a new target for therapeutic intervention in biglycan-evoked inflammatory conditions.


Acta Physiologica | 2016

PAFAH1B1 and the lncRNA NONHSAT073641 maintain an angiogenic phenotype in human endothelial cells.

Ivana Josipovic; Christian Fork; Jens Preussner; Kim-Kristin Prior; Dijana Iloska; Andrea E. Vasconez; Sandra Labocha; Carlo Angioni; Dominique Thomas; Nerea Ferreirós; Mario Looso; Soni Savai Pullamsetti; Gerd Geisslinger; Dieter Steinhilber; Ralf P. Brandes; Matthias S. Leisegang

Platelet‐activating factor acetyl hydrolase 1B1 (PAFAH1B1, also known as Lis1) is a protein essentially involved in neurogenesis and mostly studied in the nervous system. As we observed a significant expression of PAFAH1B1 in the vascular system, we hypothesized that PAFAH1B1 is important during angiogenesis of endothelial cells as well as in human vascular diseases.


PLOS ONE | 2016

The Histone Demethylase PHF8 Is Essential for Endothelial Cell Migration.

Lunda Gu; Juliane Hitzel; Franziska Moll; Christoph Kruse; Randa Abdel Malik; Jens Preussner; Mario Looso; Matthias S. Leisegang; Dieter Steinhilber; Ralf P. Brandes; Christian Fork

Epigenetic marks critically control gene expression and thus the cellular activity state. The functions of many epigenetic modifiers in the vascular system have not yet been studied. We screened for histone modifiers in endothelial cells and observed a fairly high expression of the histone plant homeodomain finger protein 8 (PHF8). Given its high expression, we hypothesize that this histone demethylase is important for endothelial cell function. Overexpression of PHF8 catalyzed the removal of methyl-groups from histone 3 lysine 9 (H3K9) and H4K20, whereas knockdown of the enzyme increased H3K9 methylation. Knockdown of PHF8 by RNAi also attenuated endothelial proliferation and survival. As a functional readout endothelial migration and tube formation was studied. PHF8 siRNA attenuated the capacity for migration and developing of capillary-like structures. Given the impact of PHF8 on cell cycle genes, endothelial E2F transcription factors were screened, which led to the identification of the gene repressor E2F4 to be controlled by PHF8. Importantly, PHF8 maintains E2F4 but not E2F1 expression in endothelial cells. Consistently, chromatin immunoprecipitation revealed that PHF8 reduces the H3K9me2 level at the E2F4 transcriptional start site, demonstrating a direct function of PHF8 in endothelial E2F4 gene regulation. Conclusion: PHF8 by controlling E2F4 expression maintains endothelial function.


Basic Research in Cardiology | 2014

Flotillin-1 facilitates toll-like receptor 3 signaling in human endothelial cells

Christian Fork; Juliane Hitzel; Benjamin J. Nichols; Ritva Tikkanen; Ralf P. Brandes

Endothelial cells are important elements in the vascular response to danger-associated molecules signaling through toll-like receptors (TLRs). Flotillin-1 and -2 are markers of membrane rafts but their true endothelial function is unknown. We hypothesized that flotillins are required for TLR signaling in human umbilical vein endothelial cells (HUVECs). Knockdown of flotillin-1 by shRNA decreased the TLR3-mediated poly-I:C-induced but not the TLR4-mediated LPS-induced inflammatory activation of HUVEC. As TLR3 but not TLR4 signals through the endosomal compartment, flotillin-1 might be involved in the transport of poly-I:C to its receptor. Consistently, uptake of poly-I:C was attenuated by flotillin-1 knockdown and probably involved the scavenger receptor SCARA4 as revealed by knockdown of this receptor. To determine the underlying mechanism, SILAC proteomics was performed. Down-regulation of flotillin-1 led to a reduction of the structural caveolae proteins caveolin-1, cavin-1 and -2, suggesting a role of flotillin-1 in caveolae formation. Flotillin-1 and caveolin-1 colocalized within the cell, and knockdown of flotillin-1 decreased caveolin-1 expression in an endoplasmic reticulum stress-dependent manner. Importantly, downregulation of caveolin-1 also attenuated TLR3-induced signaling. To demonstrate the importance of this finding, cell adhesion was studied. Flotillin-1 shRNA attenuated the poly-I:C-mediated induction of the adhesion molecules VCAM-1 and ICAM-1. As a consequence, the poly-I:C-induced adhesion of peripheral blood mononuclear cells onto HUVECs was significantly attenuated by flotillin-1 shRNA. Collectively, these data suggest that interaction between flotillin-1 and caveolin-1 may facilitate the transport of TLR3-ligands to its intracellular receptor and enables inflammatory TLR3 signaling.


Acta Physiologica | 2018

The histone demethylase Jarid1b mediates angiotensin II-induced endothelial dysfunction by controlling the 3'UTR of soluble epoxide hydrolase.

Andrea E. Vasconez; Patrick Janetzko; James A. Oo; Beatrice Pflüger-Müller; Corina Ratiu; Lunda Gu; Kristian Helin; Gerd Geisslinger; Ingrid Fleming; Katrin Schröder; Christian Fork; Ralf P. Brandes; Matthias S. Leisegang

The histone demethylase Jarid1b limits gene expression by removing the active methyl mark from histone3 lysine4 at gene promoter regions. A vascular function of Jarid1b is unknown, but a vasoprotective function to inflammatory and hypertrophic stimuli, like angiotensin II (AngII) could be inferred. This hypothesis was tested using Jarid1b knockout mice and the inhibitor PBIT.

Collaboration


Dive into the Christian Fork's collaboration.

Top Co-Authors

Avatar

Ralf P. Brandes

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juliane Hitzel

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Andrea E. Vasconez

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Ivana Josipovic

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter Steinhilber

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Gerd Geisslinger

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Kruse

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge