Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Freese is active.

Publication


Featured researches published by Christian Freese.


Biomacromolecules | 2012

Size- and Coating-Dependent Uptake of Polymer-Coated Gold Nanoparticles in Primary Human Dermal Microvascular Endothelial Cells

Christian Freese; Matthew I. Gibson; Harm-Anton Klok; Ronald E. Unger; C. James Kirkpatrick

A library-orientated approach is used to gain understanding of the interactions of well-defined nanoparticles with primary human endothelial cells, which are a key component of the vasculature. Fifteen sequentially modified gold nanoparticles (AuNPs) based on three different core sizes (18, 35, 65 nm) and five polymeric coatings were prepared. The synthetic methodology ensured homogeneity across each series of particles to allow sequential investigation of the chemical features on cellular interactions. The toxicity of these nanoparticles, their uptake behavior in primary human dermal microvascular endothelial cells (HDMECs), and quantification of uptake were all investigated. The results of our studies indicated that high concentrations of gold nanoparticles (250 μg/mL) were nontoxic and that the number of internalized nanoparticles was related to nanoparticle size and surface chemistry. In summary, the positive-charged ethanediamine-coated AuNPs were internalized to a greater extent than the negative- or neutral-charged AuNPs. Moreover, differences in the amounts of internalized AuNPs could be shown for the three neutral-charged AuNPs, whereas the uptake of hydroxypropylamine-coated particles was preferred compared with glucosamine-coated or PEGylated AuNPs. Hydroxypropylamine-coated AuNPs were found to be the most efficient neutral-charged particles in overcoming the endothelial cell barrier and entering the cell.


Biomaterials | 2014

Human endothelial cell-based assay for endotoxin as sensitive as the conventional Limulus Amebocyte Lysate assay

Ronald E. Unger; Kirsten Peters; Anne Sartoris; Christian Freese; C. James Kirkpatrick

Endotoxin, also known as lipopolysaccharide (LPS) produced by bacteria can be present in any liquid or on any biomaterial even if the material is sterile. Endotoxin in mammals can cause fever, inflammation, cell and tissue damage and irreversible septic shock and death. In the body, endothelial cells making up the blood vasculature and endothelial cells in vitro rapidly react to minute amounts of endotoxin resulting in a rapid induction of the cell adhesion molecule E-selectin. In this study we have used immunofluorescent staining to evaluate the expression of E-selectin on human microvascular endothelial cells from the skin (HDMEC) and human umbilical vein endothelial cells (HUVEC) exposed to various concentrations of LPS. In addition, the sensitivity of detection was compared with the most widely used assay for the presence of endotoxin, the Limulus Amebocyte Lysate assay (LAL). The detection of E-selectin on endothelial cells in the presence of LPS for 4 h was found to be at least as sensitive in detecting the same concentration using the LAL assay. A cell adhesion molecule-enzyme immunosorbent assay was also developed and used to quantify LPS using the endothelial cell model. A comparison of LAL and the immunofluorescent staining method was carried out with solutions, nanoparticles, biomaterial extracts and endothelial cells grown directly on biomaterials. Under all conditions, the endothelial/E-selectin model system was positive for the test samples that were positive by LAL. Thus, we propose the use of this highly sensitive, rapid, reproducible assay for the routine testing of endotoxin in all steps in the manufacturing process of materials destined for use in humans. This can give a rapid feedback and localization of bacterial contamination sources with the LAL being reserved for the testing of the final product.


FEBS Journal | 2009

The effects of α‐secretase ADAM10 on the proteolysis of neuregulin‐1

Christian Freese; Alistair N. Garratt; Falk Fahrenholz; Kristina Endres

Although ADAM10 is a major α‐secretase involved in non‐amyloidogenic processing of the amyloid precursor protein, several additional substrates have been identified, most of them in vitro. Thus, therapeutical approaches for the prevention of Alzheimer’s disease by upregulation of this metalloproteinase may have severe side effects. In the present study, we examined whether the ErbB receptor ligand neuregulin‐1, which is essential for myelination and other important neuronal functions, is cleaved by ADAM10. Studies with β‐ and γ‐secretase inhibitors, as well as with the metalloproteinase inhibitor GM6001, revealed an inhibition of neuregulin‐1 processing in human astroglioma cell line U373; however, specific RNA interference‐induced knockdown of ADAM10 remained without effect. In vivo investigations of mice overexpressing either ADAM10 or dominant negative ADAM10 showed unaltered cleavage of neuregulin‐1 compared to wild‐type animals. As a consequence, the myelin sheath thickness of peripheral nerves was unaffected in mice with altered ADAM10 activity. Thus, although the β‐secretase BACE‐1 acts as a neuregulin‐1 sheddase, ADAM10 does not lead to altered neuregulin‐1 processing either in cell culture or in vivo. Adverse reactions of an ADAM10‐based therapy of Alzheimer’s disease due to neuregulin‐1 cleavage are therefore unlikely.


Particle and Fibre Toxicology | 2014

In vitro investigation of silica nanoparticle uptake into human endothelial cells under physiological cyclic stretch

Christian Freese; Daniel Schreiner; Laura Anspach; Christoph Bantz; Michael Maskos; Ronald E. Unger; C. James Kirkpatrick

BackgroundIn general the prediction of the toxicity and therapeutic efficacy of engineered nanoparticles in humans is initially determined using in vitro static cell culture assays. However, such test systems may not be sufficient for testing nanoparticles intended for intravenous application. Once injected, these nanoparticles are caught up in the blood stream in vivo and are therefore in continuous movement. Physical forces such as shear stress and cyclic stretch caused by the pulsatile blood flow are known to change the phenotype of endothelial cells which line the luminal side of the vasculature and thus may be able to affect cell-nanoparticle interactions.MethodsIn this study we investigated the uptake of amorphous silica nanoparticles in primary endothelial cells (HUVEC) cultured under physiological cyclic stretch conditions (1 Hz, 5% stretch) and compared this to cells in a standard static cell culture system. The toxicity of varying concentrations was assessed using cell viability and cytotoxicity studies. Nanoparticles were also characterized for the induction of an inflammatory response. Changes to cell morphology was evaluated in cells by examining actin and PECAM staining patterns and the amounts of nanoparticles taken up under the different culture conditions by evaluation of intracellular fluorescence. The expression profile of 26 stress-related was determined by microarray analysis.ResultsThe results show that cytotoxicity to endothelial cells caused by silica nanoparticles is not significantly altered under stretch compared to static culture conditions. Nevertheless, cells cultured under stretch internalize fewer nanoparticles. The data indicate that the decrease of nanoparticle content in stretched cells was not due to the induction of cell stress, inflammation processes or an enhanced exocytosis but rather a result of decreased endocytosis.ConclusionsIn conclusion, this study shows that while the toxic impact of silica nanoparticles is not altered by stretch this dynamic model demonstrates altered cellular uptake of nanoparticles under physiologically relevant in vitro cell culture models. In particular for the development of nanoparticles for biomedical applications such improved in vitro cell culture models may play a pivotal role in the reduction of animal experiments and development costs.


PLOS ONE | 2014

A Novel Blood-Brain Barrier Co-Culture System for Drug Targeting of Alzheimer’s Disease: Establishment by Using Acitretin as a Model Drug

Christian Freese; Sven Reinhardt; Gudrun Hefner; Ronald E. Unger; C. James Kirkpatrick; Kristina Endres

In the pathogenesis of Alzheimer’s disease (AD) the homeostasis of amyloid precursor protein (APP) processing in the brain is impaired. The expression of the competing proteases ADAM10 (a disintegrin and metalloproteinase 10) and BACE-1 (beta site APP cleaving enzyme 1) is shifted in favor of the A-beta generating enzyme BACE-1. Acitretin–a synthetic retinoid–e.g., has been shown to increase ADAM10 gene expression, resulting in a decreased level of A-beta peptides within the brain of AD model mice and thus is of possible value for AD therapy. A striking challenge in evaluating novel therapeutically applicable drugs is the analysis of their potential to overcome the blood-brain barrier (BBB) for central nervous system targeting. In this study, we established a novel cell-based bio-assay model to test ADAM10-inducing drugs for their ability to cross the BBB. We therefore used primary porcine brain endothelial cells (PBECs) and human neuroblastoma cells (SH-SY5Y) transfected with an ADAM10-promoter luciferase reporter vector in an indirect co-culture system. Acitretin served as a model substance that crosses the BBB and induces ADAM10 expression. We ensured that ADAM10-dependent constitutive APP metabolism in the neuronal cells was unaffected under co-cultivation conditions. Barrier properties established by PBECs were augmented by co-cultivation with SH-SY5Y cells and they remained stable during the treatment with acitretin as demonstrated by electrical resistance measurement and permeability-coefficient determination. As a consequence of transcellular acitretin transport measured by HPLC, the activity of the ADAM10-promoter reporter gene was significantly increased in co-cultured neuronal cells as compared to vehicle-treated controls. In the present study, we provide a new bio-assay system relevant for the study of drug targeting of AD. This bio-assay can easily be adapted to analyze other Alzheimer- or CNS disease-relevant targets in neuronal cells, as their therapeutical potential also depends on the ability to penetrate the BBB.


Nanotoxicology | 2016

Impact of polymer-modified gold nanoparticles on brain endothelial cells: exclusion of endoplasmic reticulum stress as a potential risk factor

Laura Anspach; Ronald E. Unger; Christoph Brochhausen; Matthew I. Gibson; Harm-Anton Klok; C. James Kirkpatrick; Christian Freese

Abstract A library of polymer-coated gold nanoparticles (AuNPs) differing in size and surface modifications was examined for uptake and induction of cellular stress responses in the endoplasmic reticulum (ER stress) in human brain endothelial cells (hCMEC/D3). ER stress is known to affect the physiology of endothelial cells (ECs) and may lead to inflammation or apoptosis. Thus, even if applied at non-cytotoxic concentrations ER stress caused by nanoparticles should be prevented to reduce the risk of vascular diseases and negative effects on the integrity of barriers (e.g. blood–brain barrier). We exposed hCMEC/D3 to twelve different AuNPs (three sizes: 18, 35, and 65 nm, each with four surface-modifications) for various times and evaluated their effects on cytotoxicity, proinflammatory mediators, barrier functions and factors involved in ER stress. We demonstrated a time-dependent uptake of all AuNPs and no cytotoxicity for up to 72 h of exposure. Exposure to certain AuNPs resulted in a time-dependent increase in the proinflammatory markers IL-8, MCP-1, sVCAM, sICAM. However, none of the AuNPs induced an increase in expression of the chaperones and stress sensor proteins BiP and GRP94, respectively, or the transcription factors ATF4 and ATF6. Furthermore, no upregulation of the UPR stress sensor receptor PERK, no active splicing product of the transcription factor XBP1 and no upregulation of the transcription factor CHOP were detectable. In conclusion, the results of the present study indicate that effects of different-sized gold nanoparticles modified with various polymers were not related to the induction of ER stress in brain microvascular endothelial cells or led to apoptosis.


Microvascular Research | 2017

Identification of neuronal and angiogenic growth factors in an in vitro blood-brain barrier model system: Relevance in barrier integrity and tight junction formation and complexity

Christian Freese; Sanshiro Hanada; Petra Fallier-Becker; C. James Kirkpatrick; Ronald E. Unger

We previously demonstrated that the co-cultivation of endothelial cells with neural cells resulted in an improved integrity of the in vitro blood-brain barrier (BBB), and that this model could be useful to evaluate the transport properties of potential central nervous system disease drugs through the microvascular brain endothelial. In this study we have used real-time PCR, fluorescent microscopy, protein arrays and enzyme-linked immunosorbent assays to determine which neural- and endothelial cell-derived factors are produced in the co-culture and improve the integrity of the BBB. In addition, a further improvement of the BBB integrity was achieved by adjusting serum concentrations and growth factors or by the addition of brain pericytes. Under specific conditions expression of angiogenic, angiostatic and neurotrophic factors such as endostatin, pigment epithelium derived factor (PEDF/serpins-F1), tissue inhibitor of metalloproteinases (TIMP-1), and vascular endothelial cell growth factor (VEGF) closely mimicked the in vivo situation. Freeze-fracture analysis of these cultures demonstrated the quality and organization of the endothelial tight junction structures and their association to the two different lipidic leaflets of the membrane. Finally, a multi-cell culture model of the BBB with a transendothelial electrical resistance up to 371 (±15) Ω×cm2 was developed, which may be useful for preliminary screening of drug transport across the BBB and to evaluate cellular crosstalk of cells involved in the neurovascular unit.


International Journal of Nanomedicine | 2015

Enzyme-responsive nanocomposites for wound infection prophylaxis in burn management: in vitro evaluation of their compatibility with healing processes

Verena Grützner; Ronald E. Unger; Grit Baier; Lars Choritz; Christian Freese; Thomas Böse; Katharina Landfester; C. James Kirkpatrick

Responsive, theranostic nanosystems, capable of both signaling and treating wound infections, is a sophisticated approach to reduce the most common and potentially traumatizing side effects of burn wound treatment: slowed wound healing due to prophylactic anti-infective drug exposure as well as frequent painful dressing changes. Antimicrobials as well as dye molecules have been incorporated into biodegradable nanosystems that release their content only in the presence of pathogens. Following nanocarrier degradation by bacterial enzymes, any infection will thus emit a visible signal and be effectively treated at its source. In this study, we investigated the effect of fluorescent-labeled hyaluronan nanocapsules containing polyhexanide biguanide and poly-L-lactic acid nanoparticles loaded with octenidine on primary human dermal microvascular endothelial cells, which play a major role in cutaneous wound healing. Microscopic and flow cytometric analysis indicated a time-dependent uptake of both the nanocapsules and the nanoparticles. However, enzyme immunoassays showed no significant influence on the expression of pro-inflammatory cell adhesion molecules and cytokines by the endothelial cells. Under angiogenic-stimulating conditions, the potential to form capillary-like structures in co-culture with dermal fibroblasts was not inhibited. Furthermore, cytotoxicity studies (the MTS and crystal violet assay) after short- and long-term exposure to the materials demonstrated that both systems exhibited less toxicity than solutions of the antiseptic agents alone in comparable concentrations. The results indicate that responsive antimicrobial nanocomposites could be used as an advanced drug delivery system and a promising addition to current best practice wound infection prophylaxis with few side effects.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

An in vitro and in vivo study of peptide-functionalized nanoparticles for brain targeting: The importance of selective blood???brain barrier uptake

Gerard H. Bode; G.M.J.P.C. Coué; Christian Freese; Karin E. Pickl; Maria Sanchez-Purrà; Berta Albaiges; Salvador Borrós; Ewoud C. van Winden; Leto Tziveleka; Zili Sideratou; Johan F. J. Engbersen; Smriti Singh; Krystyna Albrecht; Jürgen Groll; Martin Möller; Andy J.G. Pötgens; Christoph Schmitz; Eleonore Fröhlich; Christian Grandfils; Frank Sinner; C. James Kirkpatrick; Harry W.M. Steinbusch; Hans Georg Frank; Ronald E. Unger; Pilar Martinez-Martinez

Targeted delivery of drugs across endothelial barriers remains a formidable challenge, especially in the case of the brain, where the blood-brain barrier severely limits entry of drugs into the central nervous system. Nanoparticle-mediated transport of peptide/protein-based drugs across endothelial barriers shows great potential as a therapeutic strategy in a wide variety of diseases. Functionalizing nanoparticles with peptides allows for more efficient targeting to specific organs. We have evaluated the hemocompatibilty, cytotoxicity, endothelial uptake, efficacy of delivery and safety of liposome, hyperbranched polyester, poly(glycidol) and acrylamide-based nanoparticles functionalized with peptides targeting brain endothelial receptors, in vitro and in vivo. We used an ELISA-based method for the detection of nanoparticles in biological fluids, investigating the blood clearance rate and in vivo biodistribution of labeled nanoparticles in the brain after intravenous injection in Wistar rats. Herein, we provide a detailed report of in vitro and in vivo observations.


Pharmacology Research & Perspectives | 2015

Identification of trichlormethiazide as a Mdr1a/b gene expression enhancer via a dual secretion-based promoter assay

Sarina Schulze; Sven Reinhardt; Christian Freese; Ulrich Schmitt; Kristina Endres

Transporters of the ATP‐binding cassette (ABC) family such as MDR1 play a pivotal role in persistence of brain homeostasis by contributing to the strict permeability properties of the blood–brain barrier. This barrier on one hand compromises treatment of central nervous system diseases by restricting access of drugs; on the other hand, an impaired or altered function of barrier building cells has been described in neurological disorders. The latter might contribute to increased vulnerability of the brain under pathological conditions or even enforce pathogenesis. Here, we present a novel approach for a systematic examination of drug impact on Mdr1 gene expression by establishing a dual reporter gene assay for the murine upstream core promoters of Mdr1a and b. We validated the time‐resolved assay in comparison with single reporter gene constructs and applied it to analyze effects of a Food and Drug Administration (FDA)‐approved drug library consisting of 627 substances. The chemo‐preventive synthetic dithiolethione oltipraz was reidentified with our assay as an already known inducer of Mdr1 gene expression. Together with two newly characterized modifiers – gemcitabine and trichlormethiazide – we prove our findings in a blood–brain barrier culture model as well as in wild‐type and Mdr1 knockout mice. In sum, we could demonstrate that our dual reporter gene assay delivers results, which also persist in the living animal and consequently is applicable for further analysis and prediction of Mdr1 regulation in vivo.

Collaboration


Dive into the Christian Freese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harm-Anton Klok

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge