Christian Freitag
University of Stuttgart
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Freitag.
Optics Express | 2014
Rudolf Weber; Thomas Graf; Peter Berger; Volkher Onuseit; Margit Wiedenmann; Christian Freitag; Anne Feuer
Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived.
Optics Express | 2014
Christian Freitag; Rudolf Weber; Thomas Graf
A key factor for laser materials processing is the absorptivity of the material at the laser wavelength, which determines the fraction of the laser energy that is coupled into the material. Based on the Fresnel equations, a theoretical model is used to determine the absorptivity for carbon fiber fabrics and carbon fiber reinforced plastics (CFRP). The surface of each carbon fiber is considered as multiple layers of concentric cylinders of graphite. With this the optical properties of carbon fibers and their composites can be estimated from the well-known optical properties of graphite.
Optics Express | 2017
Rudolf Weber; Thomas Graf; Christian Freitag; Anne Feuer; Taras V. Kononenko; V.I. Konov
In any pulsed and repetitive laser process a part of the absorbed laser energy is thermalized and stays in the material as residual heat. This residual heat is accumulating from pulse to pulse, continuously increasing the temperature, if the time between two pulses does not allow the material to sufficiently cool down. Controlling this so-called heat accumulation is one of the major challenges for materials processing with high average power pulsed lasers and repetitive processing. Heat accumulation caused by subsequent pulses (HAP) on the same spot and heat accumulation caused by subsequent scans (HAS) over the same spot can significantly reduce process quality, e.g., when the temperature increase caused by heat accumulation exceeds the melting temperature. In both cases, HAS and HAP, it is of particular interest to know the limiting number of pulses or scans after which the heat accumulation temperature exceeds a critical temperature and a pause has to be introduced. Approximation formulas for the case, where the duration of the heat input is short compared to the time between two subsequent heat inputs are derived in this paper, providing analytical scaling laws for the heat accumulation as a function of the processing parameters. The validity of these approximations is confirmed for HAP with an example of surface ablation of CrNi-steel and for HAS with multi-scan cutting of carbon fiber reinforced plastics (CFRP), both with a picosecond laser at an average power of up to 1.1 kW. It is shown that for the important case of 1-dimensional heat flow the limiting number of heat inputs decreases with the inverse of the square of the average laser power.
Journal of Applied Physics | 2015
T.V. Kononenko; Christian Freitag; M. S. Komlenok; Volkher Onuseit; Rudolf Weber; Thomas Graf; V.I. Konov
The formation of a matrix evaporation zone (MEZ) in carbon fiber reinforced plastics during multi-pass laser cutting with picosecond laser pulses is studied for a wide range of pulse frequencies (fp = 10–800 kHz) and feed rates (vf = 0.002–10 m/s). Three regimes of the formation of the MEZ are found and related with different heat accumulation effects: (i) small MEZ (<2 μm) with negligible heat accumulation, (ii) moderate-size MEZ (up to a few hundred microns) determined by heat accumulation between pulses, and (iii) large MEZ (up to a few millimeters) caused by heat accumulation between scans. The dependence of the size of the MEZ on the number of scans and the scan frequency was studied to distinguish the two heat accumulation effects (between pulses and between scans), which occur on different time-scales. A diagram to illustrate the boundaries between the three regimes of the formation of the MEZ as a function of feed rate and pulse frequency is proposed as a promising base for further studies and as ...
Proceedings of SPIE | 2014
Margit Wiedenmann; Christoph Haist; Christian Freitag; Volkher Onuseit; Rudolf Weber; Thomas Graf
Carbon fibre reinforced plastics (CFRP) have a large potential in the automotive lightweight construction due to their low density and high mechanical stability. Compared with today’s laser processing methods of metals the main issues in laser processing of CFRP are the very differing thermal, optical and mechanical properties of the components. To understand the process in detail, the ablation process of CFRP with ultrashort laser pulses was investigated. The shock wave and the vapor resulting from processing with single laser pulses were recorded. Shadow photography and luminescence photography with an ultra-high-speed camera was used to show the ablation process with a temporary resolution of up to 3 ns. The field of view was 250 μm × 250 μm. An ultrashort laser pulse with pulse duration of 4 ps and a wavelength of 800 nm was focused onto the workpiece. The energy content of the shock wave was calculated from the resulting images. The energy content of the shock wave was about 20 % of the incident energy and the speed of propagation of the shock wave was more than 2000 m/s. The high intensities in the range of 1013 W/cm2 lead to formation of a plasma plume which was clearly seen in the shadow photography images.
Proceedings of SPIE | 2011
Andreas Michalowski; Christian Freitag; Rudolf Weber; Thomas Graf
Theoretical and experimental results concerning the use of axicons for laser-ablation are reported. Analytical formulas allow to predict the generated fluence distributions and the expected ablation widths. The influence of an imperfect axicon tip is discussed. The long depth of focus of the generated beam enables easy small-sized laser marking in dimension of the laser wavelength.
Archive | 2018
Christian Freitag; Thomas Arnold; Meiko Boley; Sebastian Faas; Florian Fetzer; Christian Hagenlocher; Andreas Heider; Michael Jarwitz; Rudolf Weber; Thomas Graf
High-speed imaging is a valuable tool for investigations on laser processes. The high temporal resolution of high-speed imaging allows a detailed observation of different laser processes which helps to understand process mechanisms like e.g. the formation of spatters during laser welding or the formation of a heat affected zone during laser cutting of carbon fiber reinforced plastics (CFRP). In the following the potential of high-speed imaging as a tool for laser process development is shown using different applications as an example. Initially it is described how high-quality images can be achieved during laser processing although the laser beam itself and process emissions make this a challenging task. Subsequently different applications like laser welding, laser drilling of metals with ultra-short pulsed lasers and laser processing of CFRP are introduced. During laser welding, the formation of spatters and hot cracks can be observed. Furthermore the influence of spatial beam modulation on the welding process can be investigated by means of high-speed imaging. The capillary dynamics during laser welding of metals can be studied using high-speed X-rays imaging while in transparent materials the capillary dynamics can be directly observed. During laser drilling the drilling process can be immediately seen using a suitable experimental setup. With the help of high-speed imaging it was revealed that the formation of a heat affected zone during laser processing of CFRP with ultra-short pulses is caused by heat accumulation. Furthermore the dynamics of process emissions like particles or hot vapor generated during laser processing of CFRP was investigated.
Proceedings of SPIE | 2015
Volkher Onuseit; Christian Freitag; Margit Wiedenmann; Rudolf Weber; Jan-Philipp Negel; André Löscher; M. Abdou Ahmed; T. Graf
Laser processing of carbon fiber reinforce plastic (CFRP) is a very promising method to solve a lot of the challenges for large-volume production of lightweight constructions in automotive and airplane industries. However, the laser process is actual limited by two main issues. First the quality might be reduced due to thermal damage and second the high process energy needed for sublimation of the carbon fibers requires laser sources with high average power for productive processing. To achieve thermal damage of the CFRP of less than 10μm intensities above 108 W/cm² are needed. To reach these high intensities in the processing area ultra-short pulse laser systems are favored. Unfortunately the average power of commercially available laser systems is up to now in the range of several tens to a few hundred Watt. To sublimate the carbon fibers a large volume specific enthalpy of 85 J/mm³ is necessary. This means for example that cutting of 2 mm thick material with a kerf width of 0.2 mm with industry-typical 100 mm/sec requires several kilowatts of average power. At the IFSW a thin-disk multipass amplifier yielding a maximum average output power of 1100 W (300 kHz, 8 ps, 3.7 mJ) allowed for the first time to process CFRP at this average power and pulse energy level with picosecond pulse duration. With this unique laser system cutting of CFRP with a thickness of 2 mm an effective average cutting speed of 150 mm/sec with a thermal damage below 10μm was demonstrated.
Optics Express | 2014
Rudolf Weber; Thomas Graf; Peter Berger; Volkher Onuseit; Margit Wiedenmann; Christian Freitag; Anne Feuer
With this erratum we aim to correct a transcription error that occurred in our previous paper: In Eq. (3)a)-(3c), Eq. (5), and Eq. (6) the Greek characters were not converted correctly. The properly formatted formulae are listed below. All other contents, calculations and conclusions of the original paper remain unchanged.
Advanced Optical Technologies | 2018
Christian Freitag; Leon Pauly; Daniel Johannes Förster; Margit Wiedenmann; Rudolf Weber; T.V. Kononenko; V.I. Konov; Thomas Graf
Abstract One of the major reasons for the formation of a heat-affected zone during laser processing of carbon fiber-reinforced plastics (CFRP) with repetitive picosecond (ps) laser pulses is heat accumulation. A fraction of every laser pulse is left as what we termed residual heat in the material also after the completed ablation process and leads to a gradual temperature increase in the processed workpiece. If the time between two consecutive pulses is too short to allow for a sufficient cooling of the material in the interaction zone, the resulting temperature can finally exceed a critical temperature and lead to the formation of a heat-affected zone. This accumulation effect depends on the amount of energy per laser pulse that is left in the material as residual heat. Which fraction of the incident pulse energy is left as residual heat in the workpiece depends on the laser and process parameters, the material properties, and the geometry of the interaction zone, but the influence of the individual quantities at the present state of knowledge is not known precisely due to the lack of comprehensive theoretical models. With the present study, we, therefore, experimentally determined the amount of residual heat by means of calorimetry. We investigated the dependence of the residual heat on the fluence, the pulse overlap, and the depth of laser-generated grooves in CRFP. As expected, the residual heat was found to increase with increasing groove depth. This increase occurs due to an indirect heating of the kerf walls by the ablation plasma and the change in the absorbed laser fluence caused by the altered geometry of the generated structures.