Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Frigerio is active.

Publication


Featured researches published by Christian Frigerio.


Analytica Chimica Acta | 2012

Application of quantum dots as analytical tools in automated chemical analysis: A review

Christian Frigerio; David S.M. Ribeiro; S. Sofia M. Rodrigues; Vera L.R.G. Abreu; João A. C. Barbosa; João A.V. Prior; Karine L. Marques; João L.M. Santos

Colloidal semiconductor nanocrystals or quantum dots (QDs) are one of the most relevant developments in the fast-growing world of nanotechnology. Initially proposed as luminescent biological labels, they are finding new important fields of application in analytical chemistry, where their photoluminescent properties have been exploited in environmental monitoring, pharmaceutical and clinical analysis and food quality control. Despite the enormous variety of applications that have been developed, the automation of QDs-based analytical methodologies by resorting to automation tools such as continuous flow analysis and related techniques, which would allow to take advantage of particular features of the nanocrystals such as the versatile surface chemistry and ligand binding ability, the aptitude to generate reactive species, the possibility of encapsulation in different materials while retaining native luminescence providing the means for the implementation of renewable chemosensors or even the utilisation of more drastic and even stability impairing reaction conditions, is hitherto very limited. In this review, we provide insights into the analytical potential of quantum dots focusing on prospects of their utilisation in automated flow-based and flow-related approaches and the future outlook of QDs applications in chemical analysis.


Journal of Apiproduct and Apimedical Science | 2010

What is the future of Bee-Pollen?

Maria Graça R Campos; Christian Frigerio; Joana Lopes; Stefan Bogdanov

Maria Graça R. Campos, Christian Frigerio, Joana Lopes and Stefan Bogdanov 1 Centre of Pharmaceutical Studies, Laboratory of Pharmacognosy and Phytotherapy, Faculty of Pharmacy – R. do Norte University of Coimbra, 3000-295 Coimbra, Portugal 2 REQUIMTE, Departamento de Química-Física, Faculdade de Farmacía, Universidade do Porto, Rua Aníbal Cunha 164, Porto 4050-047, Portugal 3 Bee Products Science, 3127 Mühlethurnen, Switzerland


Analytica Chimica Acta | 2011

Quantum dots assisted photocatalysis for the chemiluminometric determination of chemical oxygen demand using a single interface flow system.

Cristina I.C. Silvestre; Christian Frigerio; João L.M. Santos; José L. F. C. Lima

A novel flow method for the determination of chemical oxygen demand (COD) is proposed in this work. It relies on the combination of a fully automated single interface flow system, an on-line UV photocatalytic unit and quantum dot (QD) nanotechnology. The developed approach takes advantage of CdTe nanocrystals capacity to generate strong oxidizing species upon irradiation with UV light, which fostered a fast catalytic degradation of the organic compounds. Luminol was used as a chemiluminescence (CL) probe for indirect COD assessment, since it is easily oxidized by the QD generated species yielding a strong CL emission that is quenched in the presence of the organic matter. The proposed methodology allowed the determination of COD concentrations between 1 and 35 mg L(-1), with good precision (R.S.D.<1.1%, n=3) and a sampling frequency of about 33 h(-1). The procedure was applied to the determination of COD in wastewater certified reference materials and the obtained results showed an excellent agreement with the certified values.


Talanta | 2011

Cadmium telluride nanocrystals as luminescent sensitizers in flow analysis

Paula R. Fortes; Christian Frigerio; Cristina I.C. Silvestre; João L.M. Santos; José L. F. C. Lima; Elias A.G. Zagatto

A fully automated multipumping flow system (MPFS) using water-soluble CdTe quantum dots (QD) as sensitizers is proposed for the chemiluminometric determination of the anti-diabetic drugs gliclazide and glipizide in pharmaceutical formulations. The nanocrystals acted as enhancers of the weak CL emission produced upon oxidation of sulphite by Ce(IV) in acidic medium, thus improving sensitivity and expanding the dynamical analytical concentration range. By interacting with the QD, the two analytes prevented their sensitizing effect yielding a chemiluminescence quenching of the Ce(IV)-SO(3)(2-)CdTe QD system. The pulsed flow inherent to MPFS assured a fast and efficient mixing of all solutions inside the flow cell, circumventing the need for a reaction coil and facilitating the monitoring of the short-lived generated chemiluminescent species. QD crystal size, concentration and spectral region for measurement were investigated.


Analytica Chimica Acta | 2012

Photoactivation by visible light of CdTe quantum dots for inline generation of reactive oxygen species in an automated multipumping flow system.

David S.M. Ribeiro; Christian Frigerio; João L.M. Santos; João A.V. Prior

Quantum dots (QD) are semiconductor nanocrystals able to generate free radical species upon exposure to an electromagnetic radiation, usually in the ultraviolet wavelength range. In this work, CdTe QD were used as highly reactive oxygen species (ROS) generators for the control of pharmaceutical formulations containing epinephrine. The developed approach was based on the chemiluminometric monitoring of the quenching effect of epinephrine on the oxidation of luminol by the produced ROS. Due to the relatively low energy band-gap of this chalcogenide a high power visible light emitting diode (LED) lamp was used as photoirradiation element and assembled in a laboratory-made photocatalytic unit. Owing to the very short lifetime of ROS and to ensure both reproducible generation and time-controlled reaction implementation and development, all reactional processes were implemented inline by using an automated multipumping micro-flow system. A linear working range for epinephrine concentration of up to 2.28×10(-6) mol L(-1) (r=0.9953; n=5) was verified. The determination rate was about 79 determinations per hour and the detection limit was about 8.69×10(-8) mol L(-1). The results obtained in the analysis of epinephrine pharmaceutical formulations by using the proposed methodology were in good agreement with those furnished by the reference procedure, with relative deviations lower than 4.80%.


Talanta | 2012

Evaluation of acetylcysteine promoting effect on CdTe nanocrystals photoluminescence by using a multipumping flow system

Christian Frigerio; Vera L.R.G. Abreu; João L.M. Santos

A simple and straightforward quantification method integrated in a fully automated multi-pumping flow system (MPFS) using water-soluble mercaptopropionic acid (MPA)-capped CdTe quantum dots (QDs) was implemented for the fluorescence quantification of N-acetyl-L-cysteine (NAC) in pharmaceutical formulations. The developed approach was based on NAC ability to establish surface interactions that result in enhanced nanocrystals fluorescence intensity, proportional to analyte concentration. Size and concentration of QDs, ageing, composition, concentration and pH of the buffer solution revealed to have a noticeable effect on the enhancing efficiency affecting sensitivity and linear working range of the methodology. Under the optimal conditions, a linear working range was obtained for NAC concentrations ranging from 50 to 750μmolL(-1) (r=0.9978), with good precision (r.s.d.<1.6%; n=5) and a sampling rate of about 75hr(-1). The detection limit (LOD) was approximately 1.6μmolL(-1). The method was applied to pharmaceutical preparations and the results revealed good agreement with those obtained by the reference procedure with relative deviations between -2.1 and +4.2%. Advantages of the new procedure include speed, low consumption of reagents, minor waste generation, requiring also much less work than the recommended HPLC method. The mechanism for luminescence enhancement of CdTe QDs is discussed. FT-IR spectra revealed that sulphydryl groups of NAC have a high affinity with the nanocrystals.


Pharmaceutical Development and Technology | 2017

Preparation, characterization and biocompatibility studies of thermoresponsive eyedrops based on the combination of nanostructured lipid carriers (NLC) and the polymer Pluronic F-127 for controlled delivery of ibuprofen

Hugo Almeida; Paulo Lobão; Christian Frigerio; Joel Fonseca; Renata Silva; José Manuel Sousa Lobo; Maria Helena Amaral

Abstract Context: Nanostructured lipid carrier (NLC) dispersions present low viscosity and poor mucoadhesive properties, which reduce the pre-corneal residence time and consequently, the bioavailability of ocular drugs. Objective: The aim of this study was to prepare thermoresponsive eyedrops based on the combination of lipid nanoparticles and a thermoresponsive polymer with mucomimetic properties (Pluronic® F-127). Materials and methods: NLCi dispersions were prepared based on the melt-emulsification and ultrasonication technique. Physicochemical and morphological characteristics of the colloidal dispersions were evaluated. The formulation was also investigated for potential cytotoxicity in Y-79 human retinoblastoma cells and the in vitro drug release profile of the ibuprofen was determined. Results: NLCi showed a Z-average below 200 nm, a highly positive zeta potential and an efficiency of encapsulation (EE) of ∼90%. The gelification of the NLCi dispersion with 15% (w/w) Pluronic® F-127 did not cause significant changes to the physicochemical properties. The potential NLC-induced cytotoxicity was evaluated by the Alamar Blue reduction assay in Y-79 cells, and no relevant cytotoxicity was observed after exposure to 0–100 µg/mL NLC for up to 72 hours. The optimized formulations showed a sustained release of ibuprofen over several hours. Discussion and conclusion: The strategy proposed in this work can be successfully used to increase the bioavailability and the therapeutic efficacy of conventional eyedrops.


Talanta | 2015

Enhancing reactive species generation upon photo-activation of CdTe quantum dots for the chemiluminometric determination of unreacted reagent in UV/S2O82− drug degradation process

Rodolfo de Melo Magalhães Santana; Thaís de Oliveira; S. Sofia M. Rodrigues; Christian Frigerio; João L.M. Santos; Mauro Korn

A new chemiluminescence (CL) flow method for persulfate determination was developed based on luminol oxidation by in-line generated radicals. Reactive oxygen species (ROS) generated by CdTe quantum dots (QDs) under a low energetic radiation (visible light emitted by LEDs) promoted the decomposition of persulfate ion (S2O8(2-)) into sulfate radical (SO4(∙-)), leading to subsequent radical chain reactions that yield the emission of light. Due to the inherent radical short lifetimes and the transient behavior of CL phenomena an automated multi-pumping flow system (MPFS) was proposed to improve sample manipulation and reaction zone implementation ensuring reproducible analysis time and high sampling rate. The developed approach allowed up to 60 determinations per hour and determine S2O8(2-) concentrations between 0.1 and 1 mmol with good linearity (R=0.9999). The method has shown good repeatability with relative standard deviations below 2.5% (n=3) for different persulfate concentrations (0.1 and 0.625 mmol L(-1)). Limits of detection (3σ) and quantification (10σ) were 2.7 and 9.1 µmol L(-1), respectively. The MPFS system was applied to persulfate determination in bench scale UV/S2O8(2-) drug degradation processes of model samples showing good versatility and providing real time information on the persulfate consumption in photo-chemical degradation methodologies.


Chemical Communications | 2013

A soft strategy for covalent immobilization of glutathione and cysteine capped quantum dots onto amino functionalized surfaces

Christian Frigerio; João L.M. Santos; João A. C. Barbosa; Peter Eaton; M. Lúcia M.F.S. Saraiva; Marieta L.C. Passos

A novel strategy for immobilization of CdTe quantum dots (QDs) onto amino functionalized solid supports was developed. QDs capped with compounds holding an amino group were covalently bonded to the substrate under mild reaction conditions, exhibiting great stability and strong luminescence.


Luminescence | 2014

Chemiluminometric determination of ascorbic acid in pharmaceutical formulations exploiting photo-activation of GSH-capped CdTe quantum dots.

Milton K. Sasaki; David S.M. Ribeiro; Christian Frigerio; João A.V. Prior; João L.M. Santos; Elias A.G. Zagatto

An automated multi-pumping flow system is proposed for the chemiluminometric determination of ascorbic acid in pharmaceutical formulations, relying on the ability of semiconductor nanocrystals to generate short-lived reactive species upon photo-irradiation. A photo-unit based on visible-light-emitting diodes is used to photo-excite cadmium telluride (CdTe) quantum dots capped with glutathione, leading to the generation of radicals that react with luminol under alkaline conditions, yielding the chemiluminescence. Ascorbic acid acts as a radical scavenger, preventing the oxidation of luminol, thus ensuring a concentration-dependent chemiluminescence quenching. After system optimization, a linear working range of 5.0 × 10(-7) to 5.0 × 10(-6) mol/L ascorbic acid (r = 0.9967, n = 5) was attained, with a detection limit of 3.05 × 10(-7) mol/L and a sampling rate of 200/h. The flow system was applied to the analysis of pharmaceutical formulations and the results were in good agreement with those obtained by the reference titrimetric procedure (RD < ± 4.3%, n = 7).

Collaboration


Dive into the Christian Frigerio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge