Christian Frithiof Niordson
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Frithiof Niordson.
International Journal of Plasticity | 2004
Viggo Tvergaard; Christian Frithiof Niordson
Abstract A nonlocal elastic–plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between an increased growth rate due to the stress concentrations around the larger voids and a reduced growth rate due to the nonlocal effects is studied. The analyses are based on an axisymmetric unit cell model with special boundary conditions, which allow for a relatively simple investigation of a full three dimensional array of spherical voids. It is shown that the high growth rate of very small voids predicted by conventional plasticity theory is not realistic when the effect of a characteristic length, dependent on the dislocation structure, is accounted for.
European Journal of Mechanics A-solids | 2003
Christian Frithiof Niordson; John W. Hutchinson
By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter the tangent moduli governing increments of stress and strain. It is shown that the modification is far from benign from a mathematical standpoint, changing the qualitative character of solutions and leading to a new type of localization that is at odds with what is expected from a strain gradient theory. The findings raise questions about the physical acceptability of this class of strain gradient theories.
International Journal of Plasticity | 2016
Emilio Martínez-Pañeda; Christian Frithiof Niordson
A general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity predictions. These differences increase significantly when large strains are taken into account, as a consequence of the contribution of strain gradients to the work hardening of the material. The magnitude of stress elevation at the crack tip and the distance ahead of the crack where GNDs significantly alter the stress distributions are quantified. The SGP dominated zone extends over meaningful physical lengths that could embrace the critical distance of several damage mechanisms, being particularly relevant for hydrogen assisted cracking models.
Journal of The Mechanics and Physics of Solids | 2003
Christian Frithiof Niordson
Abstract A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001) 2245). Cell-model analyses are used to study the influence of the material length parameters numerically, for both a single parameter version and the multiparameter theory, and significant differences between the predictions of the two models are reported. It is shown that modeling fiber elasticity is important when using the present theories. A significant stiffening effect when compared to conventional models is predicted, which is a result of a significant decrease in the level of plastic strain. Moreover, it is shown that the relative stiffening effect increases with fiber volume fraction. The higher-order nature of the theories allows for different higher-order boundary conditions at the fiber–matrix interface, and these boundary conditions are found to be of importance. Furthermore, the influence of the material length parameters on the stresses along the interface between the fiber and the matrix material is discussed, as well as the stresses within the elastic fiber which are of importance for fiber breakage.
European Journal of Mechanics A-solids | 2001
Christian Frithiof Niordson; Viggo Tvergaard
For a metal reinforced by aligned short fibres the effect of a material length scale characterising the inelastic deformations of the metal is studied. The elastic-plastic constitutive relations used here to represent the nonlocal effects are formulated so that the instantaneous hardening moduli depend on the gradient of the effective plastic strain. Numerical cell-model analyses are used to obtain a parametric understanding of the influence of different combinations of the main material parameters. The analyses show a strong dependence on the fibre diameter for given values of all other material parameters, and it is shown that this dependence differs somewhat for different values of the fibre aspect ratio.
International Journal of Solids and Structures | 2016
Emilio Martínez-Pañeda; Christian Frithiof Niordson; Lorenzo Bardella
Abstract A novel general purpose Finite Element framework is presented to study small-scale metal plasticity. A distinct feature of the adopted distortion gradient plasticity formulation, with respect to strain gradient plasticity theories, is the constitutive inclusion of the plastic spin, as proposed by Gurtin (2004) through the prescription of a free energy dependent on Nye’s dislocation density tensor. The proposed numerical scheme is developed by following and extending the mathematical principles established by Fleck and Willis (2009). The modeling of thin metallic foils under bending reveals a significant influence of the plastic shear strain and spin due to a mechanism associated with the higher-order boundary conditions allowing dislocations to exit the body. This mechanism leads to an unexpected mechanical response in terms of bending moment versus curvature, dependent on the foil length, if either viscoplasticity or isotropic hardening are included in the model. In order to study the effect of dissipative higher-order stresses, the mechanical response under non-proportional loading is also investigated.
European Journal of Mechanics A-solids | 2002
Christian Frithiof Niordson; Viggo Tvergaard
Numerical cell-model analyses for the matrix-fibre debonding in a metal matrix composite are used to study the effect of a characteristic material length in the plasticity description of the matrix material deformations. Characteristic material lengths are already present in the model problem, in the form of fibre sizes and the length associated with the debonding process, so the nonlocal plasticity model brings in an additional material length. The analyses for metal reinforced by aligned short fibres are used to obtain an understanding of the interaction of the different length scales in the problem. The nonlocal plasticity effect tends to increase the stress level at a given overall strain, which clearly tends to promote the onset of debonding.
International Journal of Fracture | 2001
Christian Frithiof Niordson
The fracture toughness in an elastic-plastic material joined by a laser weld is analyzed for steady-state crack growth along the weld. The analysis is performed for laser welds in steel. Laser welding gives high mismatch between the yield stress within the weld and that in the base material, due to the fast thermic cycle that the material undergoes in welding. The material is described by J2-flow theory, and the analysis is performed using a special numerical algorithm, in which the finite element mesh remains fixed relative to the tip of the growing crack, so that the material moves through the mesh. Fracture is modelled by using a cohesive zone criterion in front of the crack tip along the fracture zone. It is found that in general a thinner laser weld gives a higher interface toughness. Furthermore, it is shown that the preferred path of the crack is in the base material slightly outside the weld; a phenomenon also observed in experiments.
Journal of Applied Mechanics | 2006
Christian Frithiof Niordson; Viggo Tvergaard
In metal-ceramic systems the constraint on plastic flow leads to so high stress triaxialities that cavitation instabilities may occur If the void radius is on the order of magnitude of a characteristic length for the metal, the rate of void growth is reduced, and the possibility of unstable cavity growth is here analyzed for such cases. A finite strain generalization of a higher order strain gradient plasticity theory is applied for a power-law hardening material, and the numerical analyses are carried out for an axisymmetric unit cell containing a spherical void. In the range of high stress triaxiality, where cavitation instabilities are predicted by conventional plasticity theory, such instabilities are also found for the nonlocal theory, but the effects of gradient hardening delay the onset of the instability. Furthermore, in some cases the cavitation stress reaches a maximum and then decays as the void grows to a size well above the characteristic material length.
International Journal of Hydrogen Energy | 2016
Emilio Martínez-Pañeda; S Del Busto; Christian Frithiof Niordson; C. Betegón
Abstract In this work hydrogen diffusion towards the fracture process zone is examined accounting for local hardening due to geometrically necessary dislocations (GNDs) by means of strain gradient plasticity (SGP). Finite element computations are performed within the finite deformation theory to characterize the gradient-enhanced stress elevation and subsequent diffusion of hydrogen towards the crack tip. Results reveal that GNDs, absent in conventional plasticity predictions, play a fundamental role on hydrogen transport ahead of a crack. SGP estimations provide a good agreement with experimental measurements of crack tip deformation and high levels of lattice hydrogen concentration are predicted within microns to the crack tip. The important implications of the results in the understanding of hydrogen embrittlement mechanisms are thoroughly discussed.