Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Fuhrer is active.

Publication


Featured researches published by Christian Fuhrer.


The Journal of Neuroscience | 2005

Alpha7 neuronal nicotinic acetylcholine receptors are negatively regulated by tyrosine phosphorylation and Src-family kinases.

Eric Charpantier; Andreas Wiesner; Kyung-Hye Huh; R. Ogier; Jean-Charles Hoda; Geraldine Allaman; Mario Raggenbass; Dominik Feuerbach; Daniel Bertrand; Christian Fuhrer

Nicotine, a component of tobacco, is highly addictive but possesses beneficial properties such as cognitive improvements and memory maintenance. Involved in these processes is the neuronal nicotinic acetylcholine receptor (nAChR) α7, whose activation triggers depolarization, intracellular signaling cascades, and synaptic plasticity underlying addiction and cognition. It is therefore important to investigate intracellular mechanisms by which a cell regulates α7 nAChR activity. We have examined the role of phosphorylation by combining molecular biology, biochemistry, and electrophysiology in SH-SY5Y neuroblastoma cells, Xenopus oocytes, rat hippocampal interneurons, and neurons from the supraoptic nucleus, and we found tyrosine phosphorylation of α7 nAChRs. Tyrosine kinase inhibition by genistein decreased α7 nAChR phosphorylation but strongly increased acetylcholine-evoked currents, whereas tyrosine phosphatase inhibition by pervanadate produced opposite effects. Src-family kinases (SFKs) directly interacted with the cytoplasmic loop of α7 nAChRs and phosphorylated the receptors at the plasma membrane. SFK inhibition by PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] or SU6656 (2,3-dihydro-N,N-dimethyl-2-oxo-3-[(4,5,6,7-tetrahydro-1H-indol-2-yl)methylene]-1H-indole-5-sulfonamide) increased α7 nAChR-mediated responses, whereas expression of active Src reduced α7 nAChR activity. Mutant α7 nAChRs lacking cytoplasmic loop tyrosine residues because of alanine replacement of Tyr-386 and Tyr-442 were more active than wild-type receptors and insensitive to kinase or phosphatase inhibition. Because the amount of surface α7 receptors was not affected by kinase or phosphatase inhibitors, these data show that functional properties of α7 nAChRs depend on the tyrosine phosphorylation status of the receptor and are the result of a balance between SFKs and tyrosine phosphatases. These findings reveal novel regulatory mechanisms that may help to understand nicotinic receptor-dependent plasticity, addiction, and pathology.


The EMBO Journal | 1997

Association of muscle-specific kinase MuSK with the acetylcholine receptor in mammalian muscle

Christian Fuhrer; Janice Sugiyama; Robin G. Taylor; Zach W. Hall

During synaptogenesis at the neuromuscular junction, a neurally released factor, agrin, causes the clustering of acetylcholine receptors (AChRs) in the muscle membrane beneath the nerve terminal. Agrin acts through a specific receptor which is thought to have a receptor tyrosine kinase, MuSK, as one of its components. In agrin‐treated muscle cells, both MuSK and the AChR become tyrosine phosphorylated. To determine how the activation of MuSK leads to AChR clustering, we have investigated their interaction in cultured C2 myotubes. Immunoprecipitation experiments showed that MuSK is associated with the AChR and that this association is increased by agrin treatment. Agrin also caused a transient activation of the AChR‐associated MuSK, as demonstrated by MuSK phosphorylation. In agrin‐treated myotubes, MuSK phosphorylation increased with the same time course as phosphorylation of the β subunit of the AChR, but declined more quickly. Although both herbimycin and staurosporine blocked agrin‐induced AChR phosphorylation, only herbimycin inhibited the phosphorylation of MuSK. These results suggest that although agrin increases the amount of activated MuSK that is associated with the AChR, MuSK is not directly responsible for AChR phosphorylation but acts through other kinases.


Nature Protocols | 2007

Efficient transfection of DNA or shRNA vectors into neurons using magnetofection

Christophe Pellegrino; Kristin Baer; Barbara Lardi-Studler; Ilona Chudotvorova; Jean-Marc Fritschy; Igor Medina; Christian Fuhrer

Efficient and long-lasting transfection of primary neurons is an essential tool for addressing many questions in current neuroscience using functional gene analysis. Neurons are sensitive to cytotoxicity and difficult to transfect with most methods. We provide a protocol for transfection of cDNA and RNA interference (short hairpin RNA (shRNA)) vectors, using magnetofection, into rat hippocampal neurons (embryonic day 18/19) cultured for several hours to 21 d in vitro. This protocol even allows double-transfection of DNA into a small subpopulation of hippocampal neurons (GABAergic interneurons), as well as achieving long-lasting expression of DNA and shRNA constructs without interfering with neuronal differentiation. This protocol, which uses inexpensive equipment and reagents, takes 1 h; utilizes mixed hippocampal cultures, a transfection reagent, CombiMag, and a magnetic plate; shows low toxicity and is suited for single-cell analysis. Modifications done by our three laboratories are detailed.


Journal of Biological Chemistry | 2001

Agrin-induced activation of acetylcholine receptor-bound Src family kinases requires Rapsyn and correlates with acetylcholine receptor clustering.

Peggy Mittaud; P. Angelo Marangi; Susanne Erb-Vögtli; Christian Fuhrer

During neuromuscular synaptogenesis, neurally released agrin induces aggregation and tyrosine phosphorylation of acetylcholine receptors (AChRs) by acting through both the receptor tyrosine kinase MuSK (muscle-specific kinase) and the AChR-associated protein, rapsyn. To elucidate this signaling mechanism, we examined tyrosine phosphorylation of AChR-associated proteins, particularly addressing whether agrin activates Src family kinases bound to the AChR. In C2 myotubes, agrin induced tyrosine phosphorylation of these kinases, of AChR-bound MuSK, and of the AChR β and δ subunits, as observed in phosphotyrosine immunoblotting experiments. Kinase assays revealed that the activity of AChR-associated Src kinases was increased by agrin, whereas phosphorylation of the total cellular kinase pool was unaffected. In both rapsyn-deficient myotubes and staurosporine-treated C2 myotubes, where AChRs are not clustered, agrin activated MuSK but did not cause either Src family or AChR phosphorylation. In S27 mutant myotubes, which fail to aggregate AChRs, no agrin-induced phosphorylation of AChR-bound Src kinases, MuSK, or AChRs was observed. These results demonstrate first that agrin leads to phosphorylation and activation of AChR-associated Src-related kinases, which requires rapsyn, occurs downstream of MuSK, and causes AChR phosphorylation. Second, this activation intimately correlates with AChR clustering, suggesting that these kinases may play a role in agrin-induced AChR aggregation by forming an AChR-bound signaling cascade.


The EMBO Journal | 2006

Cholesterol and lipid microdomains stabilize the postsynapse at the neuromuscular junction

Raffaella Willmann; San Pun; Lena Stallmach; Gayathri Sadasivam; Alexandre Ferrao Santos; Pico Caroni; Christian Fuhrer

Stabilization and maturation of synapses are important for development and function of the nervous system. Previous studies have implicated cholesterol‐rich lipid microdomains in synapse stabilization, but the underlying mechanisms remain unclear. We found that cholesterol stabilizes clusters of synaptic acetylcholine receptors (AChRs) in denervated muscle in vivo and in nerve–muscle explants. In paralyzed muscles, cholesterol triggered maturation of nerve sprout‐induced AChR clusters into pretzel shape. Cholesterol treatment also rescued a specific defect in AChR cluster stability in cultured src−/−;fyn−/− myotubes. Postsynaptic proteins including AChRs, rapsyn, MuSK and Src‐family kinases were strongly enriched in lipid microdomains prepared from wild‐type myotubes. Microdomain disruption by cholesterol‐sequestering methyl‐β‐cyclodextrin disassembled AChR clusters and decreased AChR–rapsyn interaction and AChR phosphorylation. Amounts of microdomains and enrichment of postsynaptic proteins into microdomains were decreased in src−/−;fyn−/− myotubes but rescued by cholesterol treatment. These data provide evidence that cholesterol‐rich lipid microdomains and SFKs act in a dual mechanism in stabilizing the postsynapse: SFKs enhance microdomain‐association of postsynaptic components, whereas microdomains provide the environment for SFKs to maintain interactions and phosphorylation of these components.


Cellular and Molecular Life Sciences | 2002

Neuromuscular synaptogenesis: clustering of acetylcholine receptors revisited

Raffaella Willmann; Christian Fuhrer

Abstract. Clustering of neurotransmitter receptors in the postsynaptic membrane is critical for efficient synaptic transmission. During neuromuscular synaptogenesis, clustering of acetylcholine receptors (AChRs) is an early sign of postsynaptic differentiation. Recent studies have revealed that the earliest AChR clusters can form in the muscle independent of motorneurons. Neurally released agrin, acting through the muscle-specific kinase MuSK and rapsyn, then causes further clustering and localization of clusters underneath the nerve terminal. AChRs themselves are required for agrin-induced clustering of several postsynaptic proteins, most notably rapsyn. Once formed, AChR clusters are stabilized by several tyrosine kinases and by components of the dystrophin/utrophin glycoprotein complex, some of which also direct postnatal synaptic maturation such as formation of postjunctional folds. This review summarizes these recent results about AChR clustering, which indicate that early clustering can occur in the absence of nerves, that AChRs play an active role in the clustering process and that partly different mechanisms direct formation versus stabilization of AChR clusters.


Molecular Neurobiology | 2002

Clustering of nicotinic acetylcholine receptors: from the neuromuscular junction to interneuronal synapses

Kyung-Hye Huh; Christian Fuhrer

Fast and accurate synaptic transmission requires high-density accumulation of neurotransmitter receptors in the postsynaptic membrane. During development of the neuromuscular junction, clustering of acetylcholine receptors (AChR) is one of the first signs of postsynaptic specialization and is induced by nerve-released agrin. Recent studies have revealed that different mechanisms regulate assembly vs stabilization of AChR clusters and of the postsynaptic apparatus. MuSK, a receptor tyrosine kinase and component of the agrin receptor, and rapsyn, an AChR-associated anchoring protein, play crucial roles in the postsynaptic assembly. Once formed, AChR clusters and the postsynaptic membrane are stabilized by components of the dystrophin/utrophin glycoprotein complex, some of which also direct aspects of synaptic maturation such as formation of postjunctional folds. Nicotinic receptors are also expressed across the peripheral and central nervous system (PNS/CNS). These receptors are localized not only at the pre- but also at the postsynaptic sites where they carry out major synaptic transmission. In neurons, they are found as clusters at synaptic or extrasynaptic sites, suggesting that different mechanisms might underlie this specific localization of nicotinic receptors. This review summarizes the current knowledge about formation and stabilization of the postsynaptic apparatus at the neuromuscular junction and extends this to explore the synaptic structures of interneuronal cholinergic synapses.


The Journal of Neuroscience | 2005

Src-family kinases stabilize the neuromuscular synapse in vivo via protein interactions, phosphorylation, and cytoskeletal linkage of acetylcholine receptors

Gayathri Sadasivam; Raffaella Willmann; Shuo Lin; Susanne Erb-Vögtli; Xian Chu Kong; Markus A. Rüegg; Christian Fuhrer

Postnatal stabilization and maturation of the postsynaptic membrane are important for development and function of the neuromuscular junction (NMJ), but the underlying mechanisms remain poorly characterized. We examined the role of Src-family kinases (SFKs) in vivo. Electroporation of kinase-inactive Src constructs into soleus muscles of adult mice caused NMJ disassembly: acetylcholine receptor (AChR)-rich areas became fragmented; the topology of nerve terminal, AChRs, and synaptic nuclei was disturbed; and occasionally nerves started to sprout. Electroporation of kinase-overactive Src produced similar but milder effects. We studied the mechanism of SFK action using cultured src-/-;fyn-/- myotubes, focusing on clustering of postsynaptic proteins, their interaction with AChRs, and AChR phosphorylation. Rapsyn and the utrophin-glycoprotein complex were recruited normally into AChR-containing clusters by agrin in src-/-;fyn-/- myotubes. But after agrin withdrawal, clusters of these proteins disappeared rapidly in parallel with AChRs, revealing that SFKs are of general importance in postsynaptic stability. At the same time, AChR interaction with rapsyn and dystrobrevin and AChR phosphorylation decreased after agrin withdrawal from mutant myotubes. Unexpectedly, levels of rapsyn protein were increased in src-/-;fyn-/- myotubes, whereas rapsyn-cytoskeleton interactions were unaffected. The overall cytoskeletal link of AChRs was weak but still strengthened by agrin in mutant cells, consistent with the normal formation but decreased stability of AChR clusters. These data show that correctly balanced activity of SFKs is critical in maintaining adult NMJs in vivo. SFKs hold the postsynaptic apparatus together through stabilization of AChR-rapsyn interaction and AChR phosphorylation. In addition, SFKs control rapsyn levels and AChR-cytoskeletal linkage.


The EMBO Journal | 2001

Acetylcholine receptors are required for agrin‐induced clustering of postsynaptic proteins

P. Angelo Marangi; John R. Forsayeth; Peggy Mittaud; Susanne Erb-Vögtli; Derek J. Blake; Martijn Moransard; Andreas Sander; Christian Fuhrer

We have investigated the role of acetylcholine receptors (AChRs) in an early step of postsynaptic assembly at the neuromuscular synapse, the clustering of postsynaptic proteins induced by nerve‐released agrin. To achieve this, we used two variants of C2 myotubes virtually lacking AChRs and C2 cells in which surface AChRs were down‐regulated by AChR antibodies. In all cases, agrin caused normal clustering of the agrin receptor component MuSK, α‐dystrobrevin and utrophin, but failed to aggregate AChRs, α‐ and β‐dystroglycan, syntrophin isoforms and rapsyn, an AChR–anchoring protein necessary for postsynaptic assembly and AChR clustering. In C2 variants, the stability of rapsyn was decreased, whereas in antibody‐treated cells, rapsyn efficiently co‐localized with remaining AChRs in microaggregates. Upon ectopic injection into myofibers in vivo, rapsyn did not form clusters in the absence of AChRs. These results show that AChRs and rapsyn are interdependent components of a pre‐assembled protein complex that is required for agrin‐induced clustering of a full set of postsynaptic proteins, thus providing evidence for an active role of AChRs in postsynaptic assembly.


Molecular and Cellular Biology | 2004

A single pulse of agrin triggers a pathway that acts to cluster acetylcholine receptors

Peggy Mittaud; Alain A. Camilleri; Raffaella Willmann; Susanne Erb-Vögtli; Steven J. Burden; Christian Fuhrer

ABSTRACT Agrin triggers signaling mechanisms of high temporal and spatial specificity to achieve phosphorylation, clustering, and stabilization of postsynaptic acetylcholine receptors (AChRs). Agrin transiently activates the kinase MuSK; MuSK activation has largely vanished when AChR clusters appear. Thus, a tyrosine kinase cascade acts downstream from MuSK, as illustrated by the agrin-evoked long-lasting activation of Src family kinases (SFKs) and their requirement for AChR cluster stabilization. We have investigated this cascade and report that pharmacological inhibition of SFKs reduces early but not later agrin-induced phosphorylation of MuSK and AChRs, while inhibition of Abl kinases reduces late phosphorylation. Interestingly, SFK inhibition applied selectively during agrin-induced AChR cluster formation caused rapid cluster dispersal later upon agrin withdrawal. We also report that a single 5-min agrin pulse, followed by extensive washing, triggered long-lasting MuSK and AChR phosphorylation and efficient AChR clustering. Following the pulse, MuSK phosphorylation increased and, beyond a certain level, caused maximal clustering. These data reveal novel temporal aspects of tyrosine kinase action in agrin signaling. First, during AChR cluster formation, SFKs initiate early phosphorylation and an AChR stabilization program that acts much later. Second, a kinase mechanism rapidly activated by agrin acts thereafter autonomously in agrins absence to further increase MuSK phosphorylation and cluster AChRs.

Collaboration


Dive into the Christian Fuhrer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge