Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Guelly is active.

Publication


Featured researches published by Christian Guelly.


Stem Cells | 2006

Blood Monocytes Mimic Endothelial Progenitor Cells

Eva Rohde; Christina Malischnik; Daniela Thaler; Theresa Maierhofer; Werner Linkesch; Gerhard Lanzer; Christian Guelly; Dirk Strunk

The generation of endothelial progenitor cells (EPCs) from blood monocytes has been propagated as a novel approach in the diagnosis and treatment of cardiovascular diseases. Low‐density lipoprotein (LDL) uptake and lectin binding together with endothelial marker expression are commonly used to define these EPCs. Considerable controversy exists regarding their nature, in particular, because myelomonocytic cells share several properties with endothelial cells (ECs). This study was performed to elucidate whether the commonly used endothelial marker determination is sufficient to distinguish supposed EPCs from monocytes. We measured endothelial, hematopoietic, and progenitor cell marker expression of monocytes before and after angiogenic culture by fluorescence microscopy, flow cytometry, and real‐time reverse transcription–polymerase chain reaction. The function of primary monocytes and monocyte‐derived supposed EPCs was investigated during vascular network formation and EC colony‐forming unit (CFU‐EC) development. Monocytes cultured for 4 to 6 days under angiogenic conditions lost CD14/CD45 and displayed a commonly accepted EPC phenotype, including LDL uptake and lectin binding, CD31/CD105/CD144 reactivity, and formation of cord‐like structures. Strikingly, primary monocytes already expressed most tested endothelial genes and proteins at even higher levels than their supposed EPC progeny. Neither fresh nor cultured monocytes formed vascular networks, but CFU‐EC formation was strictly dependent on monocyte presence. LDL uptake, lectin binding, and CD31/CD105/CD144 expression are inherent features of monocytes, making them phenotypically indistinguishable from putative EPCs. Consequently, monocytes and their progeny can phenotypically mimic EPCs in various experimental models.


Nature Genetics | 2010

Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C

Michaela Auer-Grumbach; Andrea Olschewski; Lea Papić; Hannie Kremer; Meriel McEntagart; Sabine Uhrig; Carina Fischer; Eleonore Fröhlich; Zoltán Bálint; Bi Tang; Heimo Strohmaier; Hanns Lochmüller; Beate Schlotter-Weigel; Jan Senderek; Angelika Krebs; Katherine J. Dick; Richard Petty; Cheryl Longman; Neil E. Anderson; George W. Padberg; Helenius J. Schelhaas; Conny M. A. van Ravenswaaij-Arts; Thomas R. Pieber; Andrew H. Crosby; Christian Guelly

Spinal muscular atrophies (SMA, also known as hereditary motor neuropathies) and hereditary motor and sensory neuropathies (HMSN) are clinically and genetically heterogeneous disorders of the peripheral nervous system. Here we report that mutations in the TRPV4 gene cause congenital distal SMA, scapuloperoneal SMA, HMSN 2C. We identified three missense substitutions (R269H, R315W and R316C) affecting the intracellular N-terminal ankyrin domain of the TRPV4 ion channel in five families. Expression of mutant TRPV4 constructs in cells from the HeLa line revealed diminished surface localization of mutant proteins. In addition, TRPV4-regulated Ca2+ influx was substantially reduced even after stimulation with 4αPDD, a TRPV4 channel-specific agonist, and with hypo-osmotic solution. In summary, we describe a new hereditary channelopathy caused by mutations in TRPV4 and present evidence that the resulting substitutions in the N-terminal ankyrin domain affect channel maturation, leading to reduced surface expression of functional TRPV4 channels.


Stem Cells | 2007

Immune Cells Mimic the Morphology of Endothelial Progenitor Colonies In Vitro

Eva Rohde; Christina Bartmann; Katharina Schallmoser; Andreas Reinisch; Gerhard Lanzer; Werner Linkesch; Christian Guelly; Dirk Strunk

Endothelial progenitor cells (EPC) are considered powerful biologic markers for vascular function and cardiovascular risk, predicting events and death from cardiovascular causes. Colony‐forming units of endothelial progenitor cells (CFU‐EC) are used to quantify EPC circulating in human peripheral blood. The mechanisms underlying colony formation and the nature of the contributing cells are not clear. We performed subtractive CFU‐EC analyses to determine the impact of various blood cell types and kinetics of protein and gene expression during colony formation. We found that CFU‐EC mainly comprise T cells and monocytes admixed with B cells and natural killer cells. The combination of purified T cells and monocytes formed CFU‐EC structures. The lack of colonies after depletion or functional ablation of T cells or monocytes was contrasted with effective CFU‐EC formation in the absence of CD34+ cells. Microarray analyses revealed activation of immune function‐related biological processes without changes in angiogenesis‐related processes during colony formation. In concordance with a regenerative function, soluble factors derived from CFU‐EC cultures supported vascular network formation in vitro. Recognizing CFU‐EC formation as the result of a functional cross between T cells and monocytes shifts expectations of vascular regenerative medicine. Our data support the move from a view of circulating EPC toward models that include a role for immune cells in vascular regeneration.


American Journal of Human Genetics | 2011

Targeted High-Throughput Sequencing Identifies Mutations in atlastin-1 as a Cause of Hereditary Sensory Neuropathy Type I

Christian Guelly; Peng-Peng Zhu; Lea Leonardis; Lea Papić; Janez Zidar; Maria Schabhüttl; Heimo Strohmaier; Joachim Weis; Tim M. Strom; Jonathan Baets; Jan Willems; Mary M. Reilly; Eleonore Fröhlich; Martina Hatz; Slave Trajanoski; Thomas R. Pieber; Andreas R. Janecke; Craig Blackstone; Michaela Auer-Grumbach

Hereditary sensory neuropathy type I (HSN I) is an axonal form of autosomal-dominant hereditary motor and sensory neuropathy distinguished by prominent sensory loss that leads to painless injuries. Unrecognized, these can result in delayed wound healing and osteomyelitis, necessitating distal amputations. To elucidate the genetic basis of an HSN I subtype in a family in which mutations in the few known HSN I genes had been excluded, we employed massive parallel exon sequencing of the 14.3 Mb disease interval on chromosome 14q. We detected a missense mutation (c.1065C>A, p.Asn355Lys) in atlastin-1 (ATL1), a gene that is known to be mutated in early-onset hereditary spastic paraplegia SPG3A and that encodes the large dynamin-related GTPase atlastin-1. The mutant protein exhibited reduced GTPase activity and prominently disrupted ER network morphology when expressed in COS7 cells, strongly supporting pathogenicity. An expanded screen in 115 additional HSN I patients identified two further dominant ATL1 mutations (c.196G>C [p.Glu66Gln] and c.976 delG [p.Val326TrpfsX8]). This study highlights an unexpected major role for atlastin-1 in the function of sensory neurons and identifies HSN I and SPG3A as allelic disorders.


Gastroenterology | 2012

Alterations in Lipid Metabolism Mediate Inflammation, Fibrosis, and Proliferation in a Mouse Model of Chronic Cholestatic Liver Injury

Tarek Moustafa; Peter Fickert; Christoph Magnes; Christian Guelly; Andrea Thueringer; Saša Frank; Dagmar Kratky; Wolfgang Sattler; Helga Reicher; Frank Sinner; Judith Gumhold; Dagmar Silbert; Günter Fauler; Gerald Höfler; Achim Lass; Rudolf Zechner; Michael Trauner

BACKGROUND & AIMS The liver controls central processes of lipid and bile acid homeostasis. We aimed to investigate whether alterations in lipid metabolism contribute to the pathogenesis of chronic cholestatic liver disease in mice. METHODS We used microarray and metabolic profiling analyses to identify alterations in systemic and hepatic lipid metabolism in mice with disruption of the gene ATP-binding cassette sub-family B member 4 (Abcb4(-/-) mice), a model of inflammation-induced cholestatic liver injury, fibrosis, and cancer. RESULTS Alterations in Abcb4(-/-) mice, compared with wild-type mice, included deregulation of genes that control lipid synthesis, storage, and oxidation; decreased serum levels of cholesterol and phospholipids; and reduced hepatic long-chain fatty acyl-CoAs (LCA-CoA). Feeding Abcb4(-/-) mice the side chain-modified bile acid 24-norursodeoxycholic acid (norUDCA) reversed their liver injury and fibrosis, increased serum levels of lipids, lowered phospholipase and triglyceride hydrolase activities, and restored hepatic LCA-CoA and triglyceride levels. Additional genetic and nutritional studies indicated that lipid metabolism contributed to chronic cholestatic liver injury; crossing peroxisome proliferator-activated receptor (PPAR)-α-deficient mice with Abcb4(-/-) mice (to create double knockouts) or placing Abcb4(-/-) mice on a high-fat diet protected against liver injury, with features similar to those involved in the response to norUDCA. Placing pregnant Abcb4(-/-) mice on high-fat diets prevented liver injury in their offspring. However, fenofibrate, an activator of PPARα, aggravated liver injury in Abcb4(-/-) mice. CONCLUSIONS Alterations in lipid metabolism contribute to the pathogenesis and progression of cholestatic liver disease in mice.


Haematologica | 2010

Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions

Katharina Schallmoser; Christina Bartmann; Eva Rohde; Simone Bork; Christian Guelly; Anna C. Obenauf; Andreas Reinisch; Patrick Horn; Anthony D. Ho; Dirk Strunk; Wolfgang Wagner

Background Research on mesenchymal stromal cells has created high expectations for a variety of therapeutic applications. Extensive propagation to yield enough mesenchymal stromal cells for therapy may result in replicative senescence and thus hamper long-term functionality in vivo. Highly variable proliferation rates of mesenchymal stromal cells in the course of long-term expansions under varying culture conditions may already indicate different propensity for cellular senescence. We hypothesized that senescence-associated regulated genes differ in mesenchymal stromal cells propagated under different culture conditions. Design and Methods Human bone marrow-derived mesenchymal stromal cells were cultured either by serial passaging or by a two-step protocol in three different growth conditions. Culture media were supplemented with either fetal bovine serum in varying concentrations or pooled human platelet lysate. Results All mesenchymal stromal cell preparations revealed significant gene expression changes upon long-term culture. Especially genes involved in cell differentiation, apoptosis and cell death were up-regulated, whereas genes involved in mitosis and proliferation were down-regulated. Furthermore, overlapping senescence-associated gene expression changes were found in all mesenchymal stromal cell preparations. Conclusions Long-term cell growth induced similar gene expression changes in mesenchymal stromal cells independently of isolation and expansion conditions. In advance of therapeutic application, this panel of genes might offer a feasible approach to assessing mesenchymal stromal cell quality with regard to the state of replicative senescence.


The Journal of Molecular Diagnostics | 2009

Evaluation of high-resolution melting analysis as a diagnostic tool to detect the BRAF V600E mutation in colorectal tumors.

Martin Pichler; Marija Balic; Elke Stadelmeyer; Christoph Ausch; Martina Wild; Christian Guelly; Thomas Bauernhofer; Hellmut Samonigg; Gerald Hoefler; Nadia Dandachi

BRAF V600E is the predominantly occurring mutation of the cytoplasmic kinase BRAF, and, in colorectal cancer, its determination provides a diagnostic exclusion criterion for hereditary nonpolyposis colorectal cancer. The aim of our study was to develop a sensitive BRAF V600E high resolution melting (HRM) assay. We first established and optimized the BRAF HRM assay using a cell line dilution model, enabling us to detect 1% mutant DNA in a background of wild-type DNA. In a comparison, DNA sequencing and real-time allele-specific PCR in the cell line dilution model HRM assay proved to be more sensitive than DNA sequencing and denaturing high performance liquid chromatography, retaining the same sensitivity as real-time allele-specific PCR. In a learning set of 13 patients with known BRAF V600 status, the mutation was detected with high concordance by all four methods. Finally, we validated the HRM assay on 60 formalin-fixed, paraffin-embedded colorectal cancer samples. Although all mutated samples were correctly identified by HRM, the detection limit of the HRM assay decreased when using low-quality DNA derived from formalin-fixed, paraffin-embedded samples. In conclusion, HRM analysis is a powerful diagnostic tool for detection of BRAF V600E mutation with a high sensitivity and high-throughput capability. Despite the expected decrease in sensitivity, HRM can reliably be applied in archival formalin-fixed, paraffin-embedded samples tissues.


Journal of Virology | 2010

Deep sequencing reveals highly complex dynamics of human cytomegalovirus genotypes in transplant patients over time.

Irene Görzer; Christian Guelly; Slave Trajanoski; Elisabeth Puchhammer-Stöckl

ABSTRACT In lung transplant patients undergoing immunosuppression, more than one human cytomegalovirus (HCMV) genotype may emerge during follow-up, and this could be critical for the outcome of HCMV infection. Up to now, many cases of infection with multiple HCMV genotypes were probably overlooked due to the limitations of the current genotyping approaches. We have now analyzed mixed-genotype infections in 17 clinical samples from 9 lung transplant patients using the highly sensitive ultradeep-pyrosequencing (UDPS) technology. UDPS genotyping was performed at three variable HCMV genes, coding for glycoprotein N (gN), glycoprotein O (gO), and UL139. Simultaneous analysis of a mean of 10,430 sequence reads per amplicon allowed the relative amounts of distinct genotypes in the samples to be determined down to 0.1% to 1% abundance. Complex mixtures of up to six different HCMV genotypes per sample were observed. In all samples, no more than two major genotypes accounted for at least 88% of the HCMV DNA load, and these were often accompanied by up to four low-abundance genotypes at frequencies of 0.1% to 8.6%. No evidence for the emergence of new genotypes or sequence changes over time was observed. However, analysis of different samples withdrawn from the same patients at different time points revealed that the relative levels of replication of the individual HCMV genotypes changed within a mixed-genotype population upon reemergence of the virus. Our data show for the first time that, similar to what has been hypothesized for the murine model, HCMV reactivation in humans seems to occur stochastically.


Oncogene | 2004

Common alterations in gene expression and increased proliferation in recurrent acute myeloid leukemia.

Philipp B. Staber; Werner Linkesch; Dorothea Zauner; Christine Beham-Schmid; Christian Guelly; Silvia Schauer; Heinz Sill; Gerald Hoefler

Recurrent disease following high-dose chemotherapy is a major problem in patients with acute myeloid leukemia (AML). To identify its characteristics, we performed expression profiling in blasts from untreated AML and relapse, using a specific cDNA microarray comprising 4128 genes generated by cDNA subtraction supplemented with cancer-associated genes. Expression analysis of 18 AML bone marrow specimens showed that recurrent AML is commonly associated with the mRNA expression changes in a set of 58 genes. Increased cellular proliferation was indicated by the overexpression of the transferrin receptor, proliferating cell nuclear antigen, and G1 cyclins. An immunohistochemical study for Ki-67-positive blasts in 18 paired bone marrow biopsy samples confirmed a highly significant (P<0.0001) increase in the proliferation fraction at relapse. In addition, we found enhanced activation of the RAF/MEK/ERK cascade as mRNAs of MKP-1, c-jun, c-fos, and egr-1 were significantly increased at relapse. Immunohistochemistry and immunoblotting analyses for biphosphorylated ERK1/2 protein provide additional evidence for enhanced activation of the RAF/MEK/ERK pathway. The degree of increase is significantly correlated with the increased proliferation. Furthermore, the genes identified provide a rationale for further studies on predictive diagnosis and therapeutic intervention.


The Journal of Pathology | 2004

Inverse correlation of secreted frizzled-related protein 4 and β-catenin expression in endometrial stromal sarcomas

Andelko Hrzenjak; Michaela Tippl; Marie-Luise Kremser; Bettina Strohmeier; Christian Guelly; Doris Neumeister; Sigurd Lax; Farid Moinfar; Ali Tabrizi; Narges Isadi-Moud; Kurt Zatloukal; Helmut Denk

Endometrial stromal sarcomas are rare uterine tumours. Whereas the histology and immunohistochemistry of these tumours are well documented, almost nothing is known about the molecular mechanisms involved in their pathogenesis. To characterize the genes altered in these malignancies, a genome‐wide cDNA library was generated by suppression subtractive hybridization and a set of differentially expressed clones was isolated. These were then used to produce custom‐spotted cDNA arrays. Genes deregulated in endometrial stromal sarcomas were identified by cDNA array hybridization and were confirmed by quantitative real‐time PCR analyses and in situ hybridization. Following cDNA array analysis, more than 300 genes deregulated in endometrial stromal sarcoma were selected and sequenced. Among the most significantly deregulated genes were those of secreted frizzled‐related proteins (SFRPs), in particular secreted frizzled‐related protein 4 (SFRP4). SFRPs are putative modulators of the Wnt‐signalling pathway and play a role in different cellular events including cell proliferation. Compared with normal endometrium, the expression of SFRP4 was decreased in both low‐grade endometrial stromal sarcoma (ESS; n = 10) and undifferentiated endometrial sarcoma (UES; n = 4), being lower in the latter more aggressive form. These results were verified on paraffin wax‐embedded tissue by quantitative real‐time PCR analysis and in situ hybridization. Furthermore, the expression of β‐catenin, an important component of the Wnt‐signalling pathway, was regulated in an opposite manner to SFRP4, being particularly increased in undifferentiated sarcomas. The activation of the Wnt‐signalling pathway was additionally supported by the immunohistochemical demonstration that β‐catenin was translocated to the nucleus in UES. SFRP4 may therefore be a putative tumour suppressor involved in deregulation of the Wnt pathway and in the pathogenesis of ESS and UES. Copyright

Collaboration


Dive into the Christian Guelly's collaboration.

Top Co-Authors

Avatar

Slave Trajanoski

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Werner Linkesch

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Dirk Strunk

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Eva Rohde

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Carina Fischer

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Gerald Hoefler

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Gerhard Lanzer

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge