Christian Hildmann
University of Göttingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Hildmann.
Applied Microbiology and Biotechnology | 2007
Christian Hildmann; Daniel Riester; Andreas Schwienhorst
The elucidation of mechanisms of chromatin remodeling, particular transcriptional activation, and repression by histone acetylation and deacetylation has shed light on the role of histone deacetylases (HDAC) as a new kind of therapeutic target for human cancer treatment. HDACs, in general, act as components of large corepressor complexes that prevent the transcription of several tumor suppression genes. In addition, they appear to be also involved in the deacetylation of nonhistone proteins. This paper reviews the most recent insights into the diverse biological roles of HDACs as well as the evolution of this important protein family.
Analytical Biochemistry | 2003
Dennis Wegener; Christian Hildmann; Daniel Riester; Andreas Schwienhorst
Histone deacetylases (HDACs) are key targets for chemotherapeutic intervention in malignant diseases. In this paper, a highly sensitive, nonisotopic, homogeneous assay for high-throughput screening of HDAC inhibitors is presented. The assay is based on a new fluorogenic peptidic substrate of HDACs comprising an epsilon-acetylated lysyl moiety and an adjacent 4-methylcoumarin-7-amide moiety at the C terminus of the peptide chain. Upon deacetylation of the acetylated lysyl moiety, molecules are recognized as substrates by trypsin, which releases highly fluorescent 7-amino-4-methylcoumarin molecules in a subsequent step of the assay. The fluorescence increase is directly proportional to the amount of deacetylated substrate molecules, i.e., HDAC activity. Validation of an improved version of the assay revealed (i) a significantly lower enzyme consumption, (ii) an increased screening window coefficient, (iii) a good tolerance toward organic solvents, and (iv) a good suitability for a whole range of different HDAC-like enzymes. The novel assay thus will expedite studies of HDAC-like enzymes and in vitro screening for drug discovery.
Applied Microbiology and Biotechnology | 2007
Daniel Riester; Christian Hildmann; Andreas Schwienhorst
Histone deacetylase inhibitors reside among the most promising targeted anticancer agents that are potent inducers of growth arrest, differentiation, and/or apoptotic cell death of transformed cells. In October 2006, the US Food and Drug Administration approved the first drug of this new class, vorinostat (1, Zolinza, Merck). Several histone deacetylase (HDAC) inhibitors more are in clinical trials. HDAC inhibitors have shown significant activity against a variety of hematological and solid tumors at doses that are well tolerated by patients, both in monotherapy as well as in combination therapy with other drugs. This paper reviews the most recent developments in HDAC inhibitor design, particularly in the context of anticancer therapy, and other possible pharmaceutical applications.
Journal of Bacteriology | 2004
Christian Hildmann; Milena Ninkovic; Rüdiger Dietrich; Dennis Wegener; Daniel Riester; Thomas Zimmermann; Olwen M Birch; Christine Dr. Bernegger; Peter Loidl; Andreas Schwienhorst
The full-length gene encoding the histone deacetylase (HDAC)-like amidohydrolase (HDAH) from Bordetella or Alcaligenes (Bordetella/Alcaligenes) strain FB188 (DSM 11172) was cloned using degenerate primer PCR combined with inverse-PCR techniques and ultimately expressed in Escherichia coli. The expressed enzyme was biochemically characterized and found to be similar to the native enzyme for all properties examined. Nucleotide sequence analysis revealed an open reading frame of 1,110 bp which encodes a polypeptide with a theoretical molecular mass of 39 kDa. Interestingly, peptide sequencing disclosed that the N-terminal methionine is lacking in the mature wild-type enzyme, presumably due to the action of methionyl aminopeptidase. Sequence database searches suggest that the new amidohydrolase belongs to the HDAC superfamily, with the closest homologs being found in the subfamily assigned acetylpolyamine amidohydrolases (APAH). The APAH subfamily comprises enzymes or putative enzymes from such diverse microorganisms as Pseudomonas aeruginosa, Archaeoglobus fulgidus, and the actinomycete Mycoplana ramosa (formerly M. bullata). The FB188 HDAH, however, is only moderately active in catalyzing the deacetylation of acetylpolyamines. In fact, FB188 HDAH exhibits significant activity in standard HDAC assays and is inhibited by known HDAC inhibitors such as trichostatin A and suberoylanilide hydroxamic acid (SAHA). Several lines of evidence indicate that the FB188 HDAH is very similar to class 1 and 2 HDACs and contains a Zn(2+) ion in the active site which contributes significantly to catalytic activity. Initial biotechnological applications demonstrated the extensive substrate spectrum and broad optimum pH range to be excellent criteria for using the new HDAH from Bordetella/Alcaligenes strain FB188 as a biocatalyst in technical biotransformations, e.g., within the scope of human immunodeficiency virus reverse transcriptase inhibitor synthesis.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2007
Tine Kragh Nielsen; Christian Hildmann; Daniel Riester; Dennis Wegener; Andreas Schwienhorst; Ralf Ficner
Histone deacetylases (HDACs) have emerged as attractive targets in anticancer drug development. To date, a number of HDAC inhibitors have been developed and most of them are hydroxamic acid derivatives, typified by suberoylanilide hydroxamic acid (SAHA). Not surprisingly, structural information that can greatly enhance the design of novel HDAC inhibitors is so far only available for hydroxamic acids in complex with HDAC or HDAC-like enzymes. Here, the first structure of an enzyme complex with a nonhydroxamate HDAC inhibitor is presented. The structure of the trifluoromethyl ketone inhibitor 9,9,9-trifluoro-8-oxo-N-phenylnonanamide in complex with bacterial FB188 HDAH (histone deacetylase-like amidohydrolase from Bordetella/Alcaligenes strain FB188) has been determined. HDAH reveals high sequential and functional homology to human class 2 HDACs and a high structural homology to human class 1 HDACs. Comparison with the structure of HDAH in complex with SAHA reveals that the two inhibitors superimpose well. However, significant differences in binding to the active site of HDAH were observed. In the presented structure the O atom of the trifluoromethyl ketone moiety is within binding distance of the Zn atom of the enzyme and the F atoms participate in interactions with the enzyme, thereby involving more amino acids in enzyme-inhibitor binding.
Anti-Cancer Drugs | 2008
Dennis Wegener; Hedwig E. Deubzer; Ina Oehme; Till Milde; Christian Hildmann; Andreas Schwienhorst; Olaf Witt
Embryonic childhood cancer such as neuroblastoma and medulloblastoma are still a therapeutic challenge requiring novel treatment approaches. Here, we investigated the antitumoral effects of HKI 46F08, a novel trifluoromethyl ketone histone deacetylase (HDAC) inhibitor with a nonhydroxamic acid type structure. HKI 46F08 inhibits in-vitro HDAC activity in cell-free assays with a half maximal inhibitory concentration of 0.6 μmol/l and intracellular HDAC activity with a half maximal inhibitory concentration of 1.8 μmol/l. The compound reduces viability of both cultured neuroblastoma and medulloblastoma cells with an EC50 of 0.1–4 μmol/l. HKI 46F08 efficiently arrests tumor cell proliferation, represses clonogenic growth and induces differentiation and apoptosis in both MYCN-amplified and nonamplified neuroblastoma cells. In summary, we identified HKI 48F08 as a structural novel, potent HDAC inhibitor with strong antitumoral activity against embryonic childhood cancer cells in the low micromolar range.
Biochemical Journal | 2007
Kristin Moreth; Daniel Riester; Christian Hildmann; René Hempel; Dennis Wegener; Andreas Schober; Andreas Schwienhorst
HDACs (histone deacetylases) are considered to be among the most important enzymes that regulate gene expression in eukaryotic cells acting through deacetylation of epsilon-acetyl-lysine residues within the N-terminal tail of core histones. In addition, both eukaryotic HDACs as well as their bacterial counterparts were reported to also act on non-histone targets. However, we are still far from a comprehensive understanding of the biological activities of this ancient class of enzymes. In the present paper, we studied in more detail the esterase activity of HDACs, focussing on the HDAH (histone deacetylase-like amidohydrolase) from Bordetella/Alcaligenes strain FB188. This enzyme was classified as a class 2 HDAC based on sequence comparison as well as functional data. Using chromogenic and fluorogenic ester substrates we show that HDACs such as FB188 HDAH indeed have esterase activity that is comparable with those of known esterases. Similar results were obtained for human HDAC1, 3 and 8. Standard HDAC inhibitors were able to block both activities with similar IC(50) values. Interestingly, HDAC inhibitors such as suberoylanilide hydroxamic acid (SAHA) also showed inhibitory activity against porcine liver esterase and Pseudomonas fluorescens lipase. The esterase and the amidohydrolase activity of FB188 HDAH both appear to have the same substrate specificity concerning the acyl moiety. Interestingly, a Y312F mutation in the active site of HDAH obstructed amidohydrolase activity but significantly improved esterase activity, indicating subtle differences in the mechanism of both catalytic activities. Our results suggest that, in principle, HDACs may have other biological roles besides acting as protein deacetylases. Furthermore, data on HDAC inhibitors affecting known esterases indicate that these molecules, which are currently among the most promising drug candidates in cancer therapy, may have a broader target profile requiring further exploration.
Bioorganic & Medicinal Chemistry Letters | 2009
Daniel Riester; Christian Hildmann; Patricia Haus; Antonia Galetovic; Andreas Schober; Andreas Schwienhorst; Franz-Josef Meyer-Almes
Histone deacetylases reside among the most important and novel target classes in oncology. Selective lead structures are intensively developed to improve efficacy and reduce adverse effects. The common assays used so far to identify new lead structures suffer from many false positive hits due to auto-fluorescence of compounds or triggering undesired signal transduction pathways. These drawbacks are eliminated by the dual parameter competition assay reported in this study. The assay involves a new fluorescent inhibitor probe that shows an increase in both, fluorescence anisotropy and fluorescence lifetime upon binding to the enzyme. The assay is well suited for high-throughput screening.
Engineering in Life Sciences | 2011
Uta Fernekorn; Jörg Hampl; Frank Weise; Caroline Augspurger; Christian Hildmann; Maren Klett; Annette Läffert; Michael Gebinoga; Karl-Friedrich Weibezahn; Gregor Schlingloff; Mathias Worgull; Mark Schneider; Andreas Schober
A biocompatible cell culture environment that enables continued existence of three dimensionally aggregated cells in a polycarbonate‐based scaffold structure was developed. A micro structured polymeric scaffold allows perfusion of cells due to a microporous structure generated by ion track etching and micro thermoforming. Biocompatibility and sterilizability was approved for the whole system. As oxygenation and mass transport within a closed system is most relevant for 3‐D cell culture, two approaches of pumping systems were tested. The human hepatocarcinoma cell line HepG2 was used to examine basic cytological parameters in response to the enviroment. Our data indicate that an actively perfused 3‐D cell culture induces a more differentiated phenotype in HepG2 cells than the 2‐D setup. Thus, our results provide further support to the theory that 3‐D‐cultivated cells display a non‐proliferative behavior. In this respect, 3‐D cultures resemble in vivo conditions more closely. Microreactors are widely applied for organic syntheses, but can also be used for screening applications in drug discovery and medical research. The bioreactor versions presented here were equipped with active fluidic components.
RSC Advances | 2013
Uta Fernekorn; Jörg Hampl; Caroline Augspurger; Christian Hildmann; Frank Weise; Maren Klett; Annette Läffert; Michael Gebinoga; Adam Williamson; Andreas Schober
The development of reliable systems for testing new compounds for use in the pharmaceutical industry has been a challenging task to date and the concept of a 3D, organotypic cell culture is emerging as a serious alternative to traditional 2D cell cultures or animal testing. We developed a biocompatible 3D cell culture environment that enables the continued existence of cells in a polycarbonate scaffold structure optionally housed in a perfusable bioreactor system. This article focuses on scaffold-based 3D cultivation strategies of biopsy-derived primary human hepatocytes. Cells were examined for whole genome gene expression and for basic cytological parameters. Examining gene networks by Illumina Pathways Analysis revealed that genes associated with metabolic functions are predominantly upregulated under perfusion. Further, we observed individually expressed profiles, which were also reflected by basic cytological parameters such as metabolic activity, albumin production and urea synthesis. With respect to their biotransformation capability, we hypothesize that a perfused 3D culture creates better conditions for the maintenance of primary hepatocytes. For more standardizable experiments with human hepatocytes, we propose the use of a hepatocyte model immortalized by transduction procedures.