Christian J. Leumann
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian J. Leumann.
Bioorganic & Medicinal Chemistry | 2002
Christian J. Leumann
Mainly driven by the needs of antisense research, a large number of oligonucleotide analogues have been prepared and evaluated over the last 15 years. Besides minor structural modifications of the building blocks of DNA and RNA itself, a considerable effort has been devoted to the de novo design of nucleoside analogues with improved binding properties. A particularly successful concept turned out to be that of conformational restriction. This review focuses on recent advances in this area and tries to summarize scope and limitations of this design principle.
Nature Medicine | 2015
Aurélie Goyenvalle; Graziella Griffith; Arran Babbs; Samir El Andaloussi; Kariem Ezzat; Aurélie Avril; Branislav Dugovic; Rémi Chaussenot; Arnaud Ferry; Thomas Voit; Helge Amthor; Claudia Bühr; Stefan Schürch; Matthew J.A. Wood; Kay E. Davies; Cyrille Vaillend; Christian J. Leumann; Luis F. García
Antisense oligonucleotides (AONs) hold promise for therapeutic correction of many genetic diseases via exon skipping, and the first AON-based drugs have entered clinical trials for neuromuscular disorders. However, despite advances in AON chemistry and design, systemic use of AONs is limited because of poor tissue uptake, and recent clinical reports confirm that sufficient therapeutic efficacy has not yet been achieved. Here we present a new class of AONs made of tricyclo-DNA (tcDNA), which displays unique pharmacological properties and unprecedented uptake by many tissues after systemic administration. We demonstrate these properties in two mouse models of Duchenne muscular dystrophy (DMD), a neurogenetic disease typically caused by frame-shifting deletions or nonsense mutations in the gene encoding dystrophin and characterized by progressive muscle weakness, cardiomyopathy, respiratory failure and neurocognitive impairment. Although current naked AONs do not enter the heart or cross the blood-brain barrier to any substantial extent, we show that systemic delivery of tcDNA-AONs promotes a high degree of rescue of dystrophin expression in skeletal muscles, the heart and, to a lesser extent, the brain. Our results demonstrate for the first time a physiological improvement of cardio-respiratory functions and a correction of behavioral features in DMD model mice. This makes tcDNA-AON chemistry particularly attractive as a potential future therapy for patients with DMD and other neuromuscular disorders or with other diseases that are eligible for exon-skipping approaches requiring whole-body treatment.
Angewandte Chemie | 2001
Christine Brotschi; Adrian Häberli; Christian J. Leumann
The stabilizing effect of a dG:dC base-pair can also be imparted to a DNA duplex by a non-hydrogen-bonding, non-shape-complementary nucleoside analogue when interstrand stacking interactions come into play. This is the case, for example, with dBP, which has a bipyridyl (BP) residue as a nucleobase surrogate (the picture shows a dBP:dBP pair).
Chemical Society Reviews | 2011
Filip Wojciechowski; Christian J. Leumann
The complementary Watson-Crick base-pairs, A:T and G:C, have long been recognized as pivotal to both the stability of the DNA double helix and replication/transcription. Recently, the replacement of the Watson-Crick base-pairs with other molecular entities has received considerable attention. In this tutorial review we highlight different approaches used to replace natural base-pairs and equip them with novel function. We also discuss the advantages that non-natural base-pairs convey with respect to practical applications.
Nucleic Acids Research | 2012
Sue Murray; Damian Ittig; Erich Koller; Andres Berdeja; Alfred Chappell; Thazha P. Prakash; Michaela Norrbom; Eric E. Swayze; Christian J. Leumann; Punit P. Seth
We report the evaluation of 20-, 18-, 16- and 14-mer phosphorothioate (PS)-modified tricycloDNA (tcDNA) gapmer antisense oligonucleotides (ASOs) in Tm, cell culture and animal experiments and compare them to their gap-matched 20-mer 2′-O-methoxyethyl (MOE) and 14-mer 2′,4′-constrained ethyl (cEt) counterparts. The sequence-matched 20-mer tcDNA and MOE ASOs showed similar Tm and activity in cell culture under free-uptake and cationic lipid-mediated transfection conditions, while the 18-, 16- and 14-mer tcDNA ASOs were moderate to significantly less active. These observations were recapitulated in the animal experiments where the 20-mer tcDNA ASO formulated in saline showed excellent activity (ED50 3.9 mg/kg) for reducing SR-B1 mRNA in liver. The tcDNA 20-mer ASO also showed better activity than the MOE 20-mer in several extra-hepatic tissues such as kidney, heart, diaphragm, lung, fat, gastrocnemius and quadriceps. Interestingly, the 14-mer cEt ASO showed the best activity in the animal experiments despite significantly lower Tm and 5-fold reduced activity in cell culture relative to the 20-mer tcDNA and MOE-modified ASOs. Our experiments establish tcDNA as a useful modification for antisense therapeutics and highlight the role of chemical modifications in influencing ASO pharmacology and pharmacokinetic properties in animals.
Journal of the American Society for Mass Spectrometry | 2002
Stefan Schürch; Eloy Bernal-Méndez; Christian J. Leumann
The fragmentation of electrospray-generated multiply deprotonated RNA and mixed-sequence RNA/DNA pentanucleotides upon low-energy collision-induced dissociation (CID) in a hybrid quadrupole time-of-flight mass spectrometer was investigated. The goal of unambiguous sequence identification of mixed-sequence RNA/DNA oligonucleotides requires detailed understanding of the gas-phase dissociation of this class of compounds. The two major dissociation events, base loss and backbone fragmentation, are discussed and the unique fragmentation behavior of oligoribonucleotides is demonstrated. Backbone fragmentation of the all-RNA pentanucleotides is characterized by abundant c-ions and their complementary y-ions as the major sequence-defining fragment ion series. In contrast to the dissociation of oligodeoxyribonucleotides, where backbone fragmentation is initiated by the loss of a nucleobase which subsequently leads to the formation of the w- and [a-base]-ions, backbone dissociation of oligoribonucleotides is essentially decoupled from base loss. The different behavior of RNA and DNA oligonucleotides is related to the presence of the 2′-hydroxyl substituent, which is the only structural alteration between the DNA and RNA pentanucleotides studied. CID of mixed-sequence RNA/DNA pentanucleotides results in a combination of the nucleotide-typical backbone fragmentation products, with abundant w-fragment ions generated by cleavage of the phosphodiester backbone adjacent to the deoxy building blocks, whereas backbone cleavage adjacent to ribonucleotides induces the formation of c- and y-ions.
Chemical Communications | 2008
Pradeep S. Pallan; Damian Ittig; Annie Heroux; Zdzislaw Wawrzak; Christian J. Leumann; Martin Egli
The crystal structure of a DNA duplex with tricyclo-DNA (tc-DNA) residues explains the increased RNA affinity of tc-DNA relative to DNA and tc-DNAs superior resistance to nucleases.
Bioorganic & Medicinal Chemistry Letters | 1999
Isabelle Prévot-Halter; Christian J. Leumann
Selective recognition of a C-G base-pair within the parallel DNA triple-helical binding motif was achieved by a third strand containing the base 5-methyl pyrimidin-2-one. The third strand affinities (K(D)) for a representative 15-mer duplex sequence containing all four Watson-Crick base pairs (X-Y) in the center are C-G (26 nM) >> A-T (270 nM) approximately T-A (350 nM) > G-C (ca 700 nM).
Nucleic Acids Research | 2007
Pascal A. Küpfer; Christian J. Leumann
We describe the synthesis of an abasic RNA phosphoramidite carrying a photocleavable 1-(2-nitrophenyl)ethyl (NPE) group at the anomeric center and a triisopropylsilyloxymethyl (TOM) group as 2′-O-protecting group together with the analogous DNA and the 2′-OMe RNA abasic building blocks. These units were incorporated into RNA-, 2′-OMe-RNA- and DNA for the purpose of studying their chemical stabilities towards backbone cleavage in a comparative way. Stability measurements were performed under basic conditions (0.1 M NaOH) and in the presence of aniline (pH 4.6) at 37°C. The kinetics and mechanisms of strand cleavage were followed by High pressure liquid chromotography and ESI-MS. Under basic conditions, strand cleavage at abasic RNA sites can occur via β,δ-elimination and 2′,3′-cyclophosphate formation. We found that β,δ-elimination was 154-fold slower compared to the same mechanism in abasic DNA. Overall strand cleavage of abasic RNA (including cyclophosphate formation) was still 16.8 times slower compared to abasic DNA. In the presence of aniline at pH 4.6, where only β,δ-elimination contributes to strand cleavage, a 15-fold reduced cleavage rate at the RNA abasic site was observed. Thus abasic RNA is significantly more stable than abasic DNA. The higher stability of abasic RNA is discussed in the context of its potential biological role.
Nucleosides, Nucleotides & Nucleic Acids | 2003
Christine Brotschi; Christian J. Leumann
Abstract The base modified nucleoside dBP, carrying a non-hydrogen-bonding non-shape complementary base was incorporated into oligonucleotides (Brotschi, C.; Häberli, A.; Leumann C.J. Angew. Chem. Int. Ed. 2001, 40, 3012–3014). This base was designed to coordinate transition metal ions into well defined positions within a DNA double helix. Melting experiments revealed that the stability of a dBP: dBP base couple in a DNA duplex is similar to a dG: dC base pair even in the absence of transition metal ions. In the presence of transition metal ions, melting experiments revealed a decrease in duplex stability which is on a similar order for all metal ions (Mn2+, Cu2+, Zn2+, Ni2+) tested.