Christian J. Schuler
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian J. Schuler.
computer vision and pattern recognition | 2012
Harold Christopher Burger; Christian J. Schuler; Stefan Harmeling
Image denoising can be described as the problem of mapping from a noisy image to a noise-free image. The best currently available denoising methods approximate this mapping with cleverly engineered algorithms. In this work we attempt to learn this mapping directly with a plain multi layer perceptron (MLP) applied to image patches. While this has been done before, we will show that by training on large image databases we are able to compete with the current state-of-the-art image denoising methods. Furthermore, our approach is easily adapted to less extensively studied types of noise (by merely exchanging the training data), for which we achieve excellent results as well.
international conference on computer vision | 2011
Michael Hirsch; Christian J. Schuler; Stefan Harmeling; Bernhard Schölkopf
Camera shake leads to non-uniform image blurs. State-of-the-art methods for removing camera shake model the blur as a linear combination of homographically transformed versions of the true image. While this is conceptually interesting, the resulting algorithms are computationally demanding. In this paper we develop a forward model based on the efficient filter flow framework, incorporating the particularities of camera shake, and show how an efficient algorithm for blur removal can be obtained. Comprehensive comparisons on a number of real-world blurry images show that our approach is not only substantially faster, but it also leads to better deblurring results.
computer vision and pattern recognition | 2013
Christian J. Schuler; Harold Christopher Burger; Stefan Harmeling; Bernhard Schölkopf
Image deconvolution is the ill-posed problem of recovering a sharp image, given a blurry one generated by a convolution. In this work, we deal with space-invariant non-blind deconvolution. Currently, the most successful methods involve a regularized inversion of the blur in Fourier domain as a first step. This step amplifies and colors the noise, and corrupts the image information. In a second (and arguably more difficult) step, one then needs to remove the colored noise, typically using a cleverly engineered algorithm. However, the methods based on this two-step approach do not properly address the fact that the image information has been corrupted. In this work, we also rely on a two-step procedure, but learn the second step on a large dataset of natural images, using a neural network. We will show that this approach outperforms the current state-of-the-art on a large dataset of artificially blurred images. We demonstrate the practical applicability of our method in a real-world example with photographic out-of-focus blur.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2016
Christian J. Schuler; Michael Hirsch; Stefan Harmeling; Bernhard Schölkopf
We describe a learning-based approach to blind image deconvolution. It uses a deep layered architecture, parts of which are borrowed from recent work on neural network learning, and parts of which incorporate computations that are specific to image deconvolution. The system is trained end-to-end on a set of artificially generated training examples, enabling competitive performance in blind deconvolution, both with respect to quality and runtime.
german conference on pattern recognition | 2013
Harold Christopher Burger; Christian J. Schuler; Stefan Harmeling
Different methods for image denoising have complementary strengths and can be combined to improve image denoising performance, as has been noted by several authors [11,7]. Mosseri et al. [11] distinguish between internal and external methods depending whether they exploit internal or external statistics [13]. They also propose a rule-based scheme (PatchSNR) to combine these two classes of algorithms. In this paper, we test the underlying assumptions and show that many images might not be easily split into regions where internal methods or external methods are preferable. Instead we propose a learning based approach using a neural network, that automatically combines denoising results from an internal and from an external method. This approach outperforms both other combination methods and state-of-the-art stand-alone image denoising methods, hereby further closing the gap to the theoretically achievable performance limits of denoising [9]. Our denoising results can be replicated with a publicly available toolbox.
international conference on computer vision | 2011
Christian J. Schuler; Michael Hirsch; Stefan Harmeling; Bernhard Schölkopf
Taking a sharp photo at several megapixel resolution traditionally relies on high grade lenses. In this paper, we present an approach to alleviate image degradations caused by imperfect optics. We rely on a calibration step to encode the optical aberrations in a space-variant point spread function and obtain a corrected image by non-stationary deconvolution. By including the Bayer array in our image formation model, we can perform demosaicing as part of the deconvolution.
european conference on computer vision | 2012
Christian J. Schuler; Michael Hirsch; Stefan Harmeling; Bernhard Schölkopf
Camera lenses are a critical component of optical imaging systems, and lens imperfections compromise image quality. While traditionally, sophisticated lens design and quality control aim at limiting optical aberrations, recent works [1,2,3] promote the correction of optical flaws by computational means. These approaches rely on elaborate measurement procedures to characterize an optical system, and perform image correction by non-blind deconvolution. In this paper, we present a method that utilizes physically plausible assumptions to estimate non-stationary lens aberrations blindly, and thus can correct images without knowledge of specifics of camera and lens. The blur estimation features a novel preconditioning step that enables fast deconvolution. We obtain results that are competitive with state-of-the-art non-blind approaches.
german conference on pattern recognition | 2014
Rolf Köhler; Christian J. Schuler; Bernhard Schölkopf; Stefan Harmeling
Most inpainting approaches require a good image model to infer the unknown pixels. In this work, we directly learn a mapping from image patches, corrupted by missing pixels, onto complete image patches. This mapping is represented as a deep neural network that is automatically trained on a large image data set. In particular, we are interested in the question whether it is helpful to exploit the shape information of the missing regions, i.e. the masks, which is something commonly ignored by other approaches. In comprehensive experiments on various images, we demonstrate that our learning-based approach is able to use this extra information and can achieve state-of-the-art inpainting results. Furthermore, we show that training with such extra information is useful for blind inpainting, where the exact shape of the missing region might be uncertain, for instance due to aliasing effects.
german conference on pattern recognition | 2014
Martin Kiefel; Christian J. Schuler; Philipp Hennig
Predicting the time at which the integral over a stochastic process reaches a target level is a value of interest in many applications. Often, such computations have to be made at low cost, in real time. As an intuitive example that captures many features of this problem class, we choose progress bars, a ubiquitous element of computer user interfaces. These predictors are usually based on simple point estimators, with no error modelling. This leads to fluctuating behaviour confusing to the user. It also does not provide a distribution prediction (risk values), which are crucial for many other application areas. We construct and empirically evaluate a fast, constant cost algorithm using a Gauss-Markov process model which provides more information to the user.
Journal of Machine Learning Research | 2012
Philipp Hennig; Christian J. Schuler