Christian Johannes Gloeckner
German Center for Neurodegenerative Diseases
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Johannes Gloeckner.
The Journal of Neuroscience | 2011
Giovanni Piccoli; S.B. Condliffe; M. Bauer; F. Giesert; K. Boldt; S. De Astis; A. Meixner; H. Sarioglu; D.M. Vogt-Weisenhorn; W. Wurst; Christian Johannes Gloeckner; Michela Matteoli; Carlo Sala; Marius Ueffing
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the single most common cause of inherited Parkinsons disease. Little is known about its involvement in the pathogenesis of Parkinsons disease mainly because of the lack of knowledge about the physiological role of LRRK2. To determine the function of LRRK2, we studied the impact of short hairpin RNA-mediated silencing of LRRK2 expression in cortical neurons. Paired recording indicated that LRRK2 silencing affects evoked postsynaptic currents. Furthermore, LRRK2 silencing induces at the presynaptic site a redistribution of vesicles within the bouton, altered recycling dynamics, and increased vesicle kinetics. Accordingly, LRRK2 protein is present in the synaptosomal compartment of cortical neurons in which it interacts with several proteins involved in vesicular recycling. Our results suggest that LRRK2 modulates synaptic vesicle trafficking and distribution in neurons and in consequence participates in regulating the dynamics between vesicle pools inside the presynaptic bouton.
Journal of Neurochemistry | 2009
Christian Johannes Gloeckner; Annette Schumacher; Karsten Boldt; Marius Ueffing
Autosomal dominant mutations in the human Leucine‐Rich Repeat Kinase 2 (LRRK2) gene represent the most common monogenetic cause of Parkinson disease (PD) and increased kinase activity observed in pathogenic mutants of LRRK2 is most likely causative for PD‐associated neurotoxicity. The sequence of the LRRK2 kinase domain shows similarity to MAP kinase kinase kinases. Furthermore, LRRK2 shares highest sequence homology with mixed linage kinases which act upstream of canonical MAPKK and are involved in cellular stress responses. Therefore, we addressed the question if LRRK2 exhibits MAPKKK activity by systematically testing MAPKKs as candidate substrates, in vitro. We demonstrate that LRRK2 variants phosphorylate mitogen‐activated protein kinase kinases (MAPKK), including MKK3 ‐4, ‐6 and ‐7. MKKs act upstream of the MAPK p38 and JNK mediating oxidative cell stress, neurotoxicity and apoptosis. The disease‐associated LRRK2 G2019S and I2020T mutations show an increased phosphotransferase activity towards MKKs correlating with the activity shown for its autophosphorylation. Our findings present evidence of a new class of molecular targets for mutant LRRK2 that link to neurotoxicity, cellular stress, cytoskeletal dynamics and vesicular transport.
Journal of Proteome Research | 2010
Christian Johannes Gloeckner; Karsten Boldt; Felix von Zweydorf; Sandra Helm; Ludwig Wiesent; Hakan Sarioglu; Marius Ueffing
Mutations in leucine-rich repeat kinase 2 (LRRK2) that increase its kinase activity associate with familial forms of Parkinson disease (PD). As phosphorylation determines the functional state of most protein kinases, we systematically mapped LRRK2 phosphorylation sites by mass spectrometry. Our analysis revealed a high degree of constitutive phosphorylation in a narrow serine-rich region preceding the LRR-domain. Allowing de novo autophosphorylation of purified LRRK2 in an in vitro autokinase assay prior to mass spectrometric analysis, we discovered multiple sites of autophosphorylation. Solely serine and threonine residues were found phosphorylated suggesting LRRK2 as a true serine threonine kinase. Autophosphorylation mainly targets the ROC GTPase domain and its clustering around the GTP binding pocket of ROC suggests cross-regulatory activity between kinase and Roc domain. In conclusion, the phosphoprotein LRRK2 functions as an autocatalytically active serine threonine kinase. Clustering of phosphosites within two discrete domains suggest that phosphorylation may regulate its biological functions in a yet unknown fashion.
Investigative Ophthalmology & Visual Science | 2010
Elod Kortvely; Stefanie M. Hauck; Gabriele Duetsch; Christian Johannes Gloeckner; Elisabeth Kremmer; Claudia S. Alge-Priglinger; Cornelia A. Deeg; Marius Ueffing
PURPOSE SNPs in chromosomal region 10q26 harboring PLEKHA1, ARMS2, and Htra1 showed the strongest association with age-related macular degeneration. Recent evidence suggests that in patients homozygous for the risk allele, the lack of synthesis of the poorly characterized ARMS2 is causative of this disorder. The present study was undertaken to gain an understanding of the genuine (patho)physiological role of this protein. METHODS ARMS2-interacting proteins were identified by using a yeast two-hybrid system and validated by coprecipitation. Immunofluorescence was applied to reveal the localization of ARMS2 in transfected cells and in human eyes. Western blot analyses were performed on extra- and intracellular fractions of ARMS2-expressing cells to demonstrate the secretion of ARMS2. RESULTS Contrary to previous reports, this study showed that ARMS2 is a secreted protein that binds several matrix proteins. Notably, ARMS2 directly interacts with fibulin-6 (hemicentin-1). Mutations in the fibulin-6 gene have been demonstrated to cause familial AMD. ARMS2 also interacts with further extracellular proteins, several of which have been implicated in macular dystrophies. Although ARMS2 apparently lacks any classic targeting sequence, it is translocated to the endoplasmic reticulum in cultured cells before secretion. ARMS2 is mostly confined to choroid pillars in human eyes, representing a part of extracellular matrix and corresponding to the principal sites of drusen formation. CONCLUSIONS The pivotal role of the extracellular matrix in the progression of AMD is underlined by the abnormal deposition of extracellular debris in the macula, observed frequently in affected individuals. The results have shown that ARMS2 may be necessary for proper matrix function.
Molecular & Cellular Proteomics | 2011
Andrea Meixner; Karsten Boldt; Marleen Van Troys; Manor Askenazi; Christian Johannes Gloeckner; Matthias Bauer; Jarrod A. Marto; Christophe Ampe; Norbert Kinkl; Marius Ueffing
Mutations in human leucine-rich repeat kinase 2 (Lrrk2), a protein of yet unknown function, are linked to Parkinsons disease caused by degeneration of midbrain dopaminergic neurons. The protein comprises several domains including a GTPase and a kinase domain both affected by several pathogenic mutations. To elucidate the molecular interaction network of endogenous Lrrk2 under stoichiometric constraints, we applied QUICK (quantitative immunoprecipitation combined with knockdown) in NIH3T3 cells. The identified interactome reveals actin isoforms as well as actin-associated proteins involved in actin filament assembly, organization, rearrangement, and maintenance, suggesting that the biological function of Lrrk2 is linked to cytoskeletal dynamics. In fact, we demonstrate Lrrk2 de novo binding to F-actin and its ability to modulate its assembly in vitro. When tested in intact cells, knockdown of Lrrk2 causes morphological alterations in NIH3T3 cells. In developing dopaminergic midbrain primary neurons, Lrrk2 knockdown results in shortened neurite processes, indicating a physiological role of Lrrk2 in cytoskeletal organization and dynamics of dopaminergic neurons. Hence, our results demonstrate that molecular interactions as well as the physiological function of Lrrk2 are closely related to the organization of the actin-based cytoskeleton, a crucial feature of neuronal development and neuron function.
Journal of Clinical Investigation | 2011
Karsten Boldt; Dorus A. Mans; Jungyeon Won; Jeroen van Reeuwijk; Andreas Vogt; Norbert Kinkl; Stef J.F. Letteboer; Wanda L. Hicks; Ron Hurd; Jürgen K. Naggert; Yves Texier; Anneke I. den Hollander; Robert K. Koenekoop; Jean Bennett; Frans P.M. Cremers; Christian Johannes Gloeckner; Patsy M. Nishina; Ronald Roepman; Marius Ueffing
The mutations that cause Leber congenital amaurosis (LCA) lead to photoreceptor cell death at an early age, causing childhood blindness. To unravel the molecular basis of LCA, we analyzed how mutations in LCA5 affect the connectivity of the encoded protein lebercilin at the interactome level. In photoreceptors, lebercilin is uniquely localized at the cilium that bridges the inner and outer segments. Using a generally applicable affinity proteomics approach, we showed that lebercilin specifically interacted with the intraflagellar transport (IFT) machinery in HEK293T cells. This interaction disappeared when 2 human LCA-associated lebercilin mutations were introduced, implicating a specific disruption of IFT-dependent protein transport, an evolutionarily conserved basic mechanism found in all cilia. Lca5 inactivation in mice led to partial displacement of opsins and light-induced translocation of arrestin from photoreceptor outer segments. This was consistent with a defect in IFT at the connecting cilium, leading to failure of proper outer segment formation and subsequent photoreceptor degeneration. These data suggest that lebercilin functions as an integral element of selective protein transport through photoreceptor cilia and provide a molecular demonstration that disrupted IFT can lead to LCA.
European Heart Journal | 2011
Dirk Sibbing; Arne Pfeufer; Tamara Perisic; Alexander M. Mannes; Karin Fritz-Wolf; Sarah Unwin; Moritz F. Sinner; Christian Gieger; Christian Johannes Gloeckner; Heinz-Erich Wichmann; Elisabeth Kremmer; Zasie Schäfer; Axel Walch; Martin Hinterseer; Michael Nabauer; Stefan Kääb; Adnan Kastrati; Albert Schömig; Thomas Meitinger; Georg W. Bornkamm; Marcus Conrad; Nicolas von Beckerath
AIMS Cardiac energy requirement is met to a large extent by oxidative phosphorylation in mitochondria that are highly abundant in cardiac myocytes. Human mitochondrial thioredoxin reductase (TXNRD2) is a selenocysteine-containing enzyme essential for mitochondrial oxygen radical scavenging. Cardiac-specific deletion of Txnrd2 in mice results in dilated cardiomyopathy (DCM). The aim of this study was to investigate whether TXNRD2 mutations explain a fraction of monogenic DCM cases. METHODS AND RESULTS Sequencing and subsequent genotyping of TXNRD2 in patients diagnosed with DCM (n = 227) and in DCM-free (n = 683) individuals from the general population sample KORA S4 was performed. The functional impact of observed mutations on Txnrd2 function was tested in mouse fibroblasts. We identified two novel amino acid residue-altering TXNRD2 mutations [175G > A (Ala59Thr) and 1124G > A (Gly375Arg)] in three heterozygous carriers among 227 patients that were not observed in the 683 DCM-free individuals. Both DCM-associated mutations result in amino acid substitutions of highly conserved residues in helices contributing to the flavin-adenine dinucleotide (FAD)-binding domain of TXNRD2. Functional analysis of both mutations in Txnrd2(-/-) mouse fibroblasts revealed that contrasting to wild-type (wt) Txnrd2, neither mutant did restore Txnrd2 function. Mutants even impaired the survival of Txnrd2 wt cells under oxidative stress by a dominant-negative mechanism. CONCLUSION For the first time, we describe mutations in DCM patients in a gene involved in the regulation of cellular redox state. TXNRD2 mutations may explain a fraction of human DCM disease burden.
Journal of the American Chemical Society | 2009
Colin A. Lowery; Junguk Park; Christian Johannes Gloeckner; Michael M. Meijler; Ryan S. Mueller; Helena I. Boshoff; Ricky L. Ulrich; Clifton E. Barry; Douglas H. Bartlett; Vladimir V. Kravchenko; Gunnar F. Kaufmann; Kim D. Janda
In nature, bacteria rarely exist as single, isolated entities, but rather as communities comprised of many other species including higher host organisms. To survive in these competitive environments, microorganisms have developed elaborate tactics such as the formation of biofilms and the production of antimicrobial toxins. Recently, it was discovered that the gram-negative bacterium Pseudomonas aeruginosa , an opportunistic human pathogen, produces an antibiotic, 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione (C(12)-TA), derived from one of its quorum sensing molecules. Here, we present a comprehensive study of the expanded spectrum of C(12)-TA antibacterial activity against microbial competitors encountered by P. aeruginosa in nature as well as significant human pathogens. The mechanism of action of C(12)-TA was also elucidated, and C(12)-TA was found to dissipate both the membrane potential and the pH gradient of Gram-positive bacteria, correlating well with cell death. Notably, in stark contrast to its parent molecule 3-oxo-dodecanoyl homoserine lactone (3-oxo-C(12)-HSL), neither activation of cellular stress pathways nor cytotoxicity was observed in human cells treated with C(12)-TA. Our results suggest that the QS machinery of P. aeruginosa has evolved for a dual-function, both to signal others of the same species and also to defend against host immunity and competing bacteria. Because of the broad-spectrum antibacterial activity, established mode of action, lack of rapid resistance development, and tolerance by human cells, the C(12)-TA scaffold may also serve as a new lead compound for the development of antimicrobial therapeutics.
Molecular & Cellular Proteomics | 2006
Hans Zischka; Ralf J. Braun; Enrico P. Marantidis; Dietmute Büringer; Carsten Bornhövd; Stefanie M. Hauck; Oliver Demmer; Christian Johannes Gloeckner; Andreas S. Reichert; Frank Madeo; Marius Ueffing
One major problem concerning the electrophoresis of mitochondria is the heterogeneity of mitochondrial appearance especially under pathological conditions. We show here the use of zone electrophoresis in a free flow electrophoresis device (ZE-FFE) as an analytical sensor to discriminate between different yeast mitochondrial populations. Impairment of the structural properties of the organelles by hyperosmotic stress resulted in broad separation profiles. Conversely untreated mitochondria gave rise to homogeneous populations reflected by sharp separation profiles. Yeast mitochondria with altered respiratory activity accompanied by a different outer membrane proteome composition could be discriminated based on electrophoretic deflection. Proteolysis of the mitochondrial surface proteome and the deletion of a single major protein species of the mitochondrial outer membrane altered the ZE-FFE deflection of these organelles. To demonstrate the usefulness of ZE-FFE for the analysis of mitochondria associated with pathological processes, we analyzed mitochondrial fractions from an apoptotic yeast strain. The cdc48S565G strain carries a mutation in the CDC48 gene that is an essential participant in the endoplasmic reticulum-associated protein degradation pathway. Mutant cells accumulate polyubiquitinated proteins in microsomal and mitochondrial extracts. Subsequent ZE-FFE characterization could distinguish a mitochondrial subfraction specifically enriched with polyubiquitinated proteins from the majority of non-affected mitochondria. This result demonstrates that ZE-FFE may give important information on the specific properties of subpopulations of a mitochondrial preparation allowing a further detailed functional analysis.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Christian Johannes Gloeckner; Amanda L. Garner; Fana B. Mersha; Yelena Oksov; Nancy Tricoche; Lisa M. Eubanks; Sara Lustigman; Gunnar F. Kaufmann; Kim D. Janda
Onchocerciasis, or river blindness, is a neglected tropical disease caused by the filarial nematode Onchocerca volvulus that affects more than 37 million people, mainly in third world countries. Currently, the only approved drug available for mass treatment is ivermectin, however, drug resistance is beginning to emerge, thus, new therapeutic targets and agents are desperately needed to treat and cure this devastating disease. Chitin metabolism plays a central role in invertebrate biology due to the critical structural function of chitin for the organism. Taken together with its absence in mammals, targeting chitin is an appealing therapeutic avenue. Importantly, the chitinase OvCHT1 from O. volvulus was recently discovered, however, its exact role in the worm’s metabolism remains unknown. A screening effort against OvCHT1 was conducted using the Johns Hopkins Clinical Compound Library that contains over 1,500 existing drugs. Closantel, a veterinary anthelmintic with known proton ionophore activities, was identified as a potent and specific inhibitor of filarial chitinases, an activity not previously reported for this compound. Notably, closantel was found also to completely inhibit molting of O. volvulus infective L3 stage larvae. Closantel appears to target two important biochemical processes essential to filarial parasites. To begin to unravel closantel’s effects, a retro-fragment-based study was used to define structural elements critical for closantel’s chitinase inhibitor function. As resources towards the development of new agents that target neglected tropical diseases are scant, the finding of an existing drug with impact against O. volvulus provides promise in the hunt for new therapies against river blindness.