Christian Jørgensen
University of Bergen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Jørgensen.
Evolutionary Applications | 2009
Katja Enberg; Christian Jørgensen; Erin S. Dunlop; Mikko Heino; Ulf Dieckmann
Worldwide depletion of fish stocks has led fisheries managers to become increasingly concerned about rebuilding and recovery planning. To succeed, factors affecting recovery dynamics need to be understood, including the role of fisheries‐induced evolution. Here we investigate a stock’s response to fishing followed by a harvest moratorium by analyzing an individual‐based evolutionary model parameterized for Atlantic cod Gadus morhua from its northern range, representative of long‐lived, late‐maturing species. The model allows evolution of life‐history processes including maturation, reproduction, and growth. It also incorporates environmental variability, phenotypic plasticity, and density‐dependent feedbacks. Fisheries‐induced evolution affects recovery in several ways. The first decades of recovery were dominated by demographic and density‐dependent processes. Biomass rebuilding was only lightly influenced by fisheries‐induced evolution, whereas other stock characteristics such as maturation age, spawning stock biomass, and recruitment were substantially affected, recovering to new demographic equilibria below their preharvest levels. This is because genetic traits took thousands of years to evolve back to preharvest levels, indicating that natural selection driving recovery of these traits is weaker than fisheries‐induced selection was. Our results strengthen the case for proactive management of fisheries‐induced evolution, as the restoration of genetic traits altered by fishing is slow and may even be impractical.
Ecology | 2008
Christian Jørgensen; Erin S. Dunlop; Anders Frugård Opdal; Øyvind Fiksen
Individuals migrate to exploit heterogeneities between spatially separated environments to modulate growth, survival, or reproduction. We devised a bioenergetics model to investigate the evolution of migration distance and its dependence on individual states. Atlantic cod Gadus morhua ranges from sedentary populations to stocks that migrate several thousand kilometers annually. We focused on the Northeast Arctic cod stock, which migrates south to spawn. A linear relationship between migration distance and the expected survival of offspring was assumed, here understood as the prospects for future survival and development that a fertilized egg faces at a particular spawning location. Reasons for why it may increase southward include warmer water that increases development rates, and thereby survival, along the pelagic drift trajectory. In the model, ingested energy can either be allocated to growth or stored for migration and reproduction. When migrating, individuals forgo foraging opportunities and expend energy. Optimal energy allocation and migration strategies were found using state-dependent optimization, with body length, age, condition, and current food availability as individual states. For both a historical and contemporary fishing regime we modeled two behaviors: (1) homing cod returning to the same spawning site each year and (2) roaming cod with no such constraints. The model predicted distinct regions of locally high spawning stock biomass. Large individuals in good condition migrated farthest, and these also tended to mature later in life. The roaming cod spread farther south as they grew larger and older. Homing cod did not have this freedom, and spawning was generally concentrated along a narrower stretch of the coastline. Under contemporary fishing, individuals matured earlier at a smaller size, had shorter migrations, spawned over a contracted geographical range, and tended to be in poorer condition. The effects were most pronounced for the homing behavior.
Fish and Fisheries | 2014
Ane T. Laugen; Georg H. Engelhard; Rebecca Whitlock; Robert Arlinghaus; Dorothy Jane Dankel; Erin S. Dunlop; Anne Maria Eikeset; Katja Enberg; Christian Jørgensen; Shuichi Matsumura; Sébastien Nusslé; Davnah Urbach; Loïc Baulier; David S. Boukal; Bruno Ernande; Fiona D. Johnston; Fabien Mollet; Heidi Pardoe; Nina Overgaard Therkildsen; Silva Uusi-Heikkilä; Anssi Vainikka; Mikko Heino; Adriaan D. Rijnsdorp; Ulf Dieckmann
Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.
Evolutionary Applications | 2009
Christian Jørgensen; Bruno Ernande; Øyvind Fiksen
Industrial fishing has been identified as a cause for life history changes in many harvested stocks, mainly because of the intense fishing mortality and its size‐selectivity. Because these changes are potentially evolutionary, we investigate evolutionarily stable life‐histories and yield in an energy‐allocation state‐dependent model for Northeast Arctic cod Gadus morhua. We focus on the evolutionary effects of size‐selective fishing because regulation of gear selectivity may be an efficient management tool. Trawling, which harvests fish above a certain size, leads to early maturation except when fishing is low and confined to mature fish. Gillnets, where small and large fish escape, lead to late maturation for low to moderate harvest rates, but when harvest rates increase maturation age suddenly drops. This is because bell‐shaped selectivity has two size‐refuges, for fish that are below and above the harvestable size‐classes. Depending on the harvest rate it either pays to grow through the harvestable slot and mature above it, or mature small below it. Sustainable yield on the evolutionary time‐scale is highest when fishing is done by trawling, but only for a small parameter region. Fishing with gillnets is better able to withstand life‐history evolution, and maintains yield over a wider range of fishing intensities.
Evolutionary Applications | 2009
Erin S. Dunlop; Katja Enberg; Christian Jørgensen; Mikko Heino
Table of contents
The American Naturalist | 2011
Christian Jørgensen; Sonya K. Auer; David N. Reznick
Since Smith and Fretwell’s seminal article in 1974 on the optimal offspring size, most theory has assumed a trade-off between offspring number and offspring fitness, where larger offspring have better survival or fitness, but with diminishing returns. In this article, we use two ubiquitous biological mechanisms to derive the shape of this trade-off: the offspring’s growth rate combined with its size-dependent mortality (predation). For a large parameter region, we obtain the same sigmoid relationship between offspring size and offspring survival as Smith and Fretwell, but we also identify parameter regions where the optimal offspring size is as small or as large as possible. With increasing growth rate, the optimal offspring size is smaller. We then integrate our model with strategies of parental care. Egg guarding that reduces egg mortality favors smaller or larger offspring, depending on how mortality scales with size. For live-bearers, the survival of offspring to birth is a function of maternal survival; if the mother’s survival increases with her size, then the model predicts that larger mothers should produce larger offspring. When using parameters for Trinidadian guppies Poecilia reticulata, differences in both growth and size-dependent predation are required to predict observed differences in offspring size between wild populations from high- and low-predation environments.
The American Naturalist | 2009
Sigrunn Eliassen; Christian Jørgensen; Marc Mangel; Jarl Giske
The value of acquiring environmental information depends on the costs of collecting it and its utility. Foragers that search for patchily distributed resources may use experiences in previous patches to learn the habitat quality and adjust their behavior. We map the ecological landscape for the evolution of learning under a range of conditions, including both spatial and temporal heterogeneity. We compare the learning strategy with genetically fixed patch‐leaving rules and with strategies of foragers that have free and perfect information about their environment. The model reveals that the efficiency of learning is highest when low encounter stochasticity results in reliable estimates of patch quality, when there is no or little temporal change, and when there is little spatial variability. This partially contrasts with the value of learning, which is highest when there is temporal change, because flexible strategies may track the environmental trend, and when there is spatial variability, because there is a need to distinguish between good and bad patches. Learning rules with short‐term memory are beneficial when patch information is accurate and when there is temporal change, whereas learning rules that update slowly are generally more robust to spatial variability.
Proceedings of the Royal Society of London B: Biological Sciences | 2008
Mikko Heino; Loïc Baulier; David S. Boukal; Erin S. Dunlop; Sigrunn Eliassen; Katja Enberg; Christian Jørgensen; Øystein Varpe
Fishing is often size selective such that the likelihood of capture increases with body size. It has therefore been postulated that fishing could favour evolution of slower growth because smaller size would reduce exposure to fishing gear (e.g. [Ricker 1981][1]). A recent study by Swain et al . ([
Biology Letters | 2012
Christian Jørgensen; Myron A. Peck; Fabio Antognarelli; Ernesto Azzurro; Michael T. Burrows; William W. L. Cheung; Andrea Cucco; Rebecca E. Holt; Klaus B. Huebert; Stefano Marras; David J. McKenzie; Julian D. Metcalfe; Angel Pérez-Ruzafa; Matteo Sinerchia; John F. Steffensen; Lorna R. Teal; Paolo Domenici
At the end of May, 17 scientists involved in an EU COST Action on Conservation Physiology of Marine Fishes met in Oristano, Sardinia, to discuss how physiology can be better used in modelling tools to aid in management of marine ecosystems. Current modelling approaches incorporate physiology to different extents, ranging from no explicit consideration to detailed physiological mechanisms, and across scales from a single fish to global fishery resources. Biologists from different sub-disciplines are collaborating to rise to the challenge of projecting future changes in distribution and productivity, assessing risks for local populations, or predicting and mitigating the spread of invasive species.
Biology Letters | 2015
Rebecca E. Holt; Christian Jørgensen
The difference between maximum metabolic rate and standard metabolic rate is referred to as aerobic scope, and because it constrains performance it is suggested to constitute a key limiting process prescribing how fish may cope with or adapt to climate warming. We use an evolutionary bioenergetics model for Atlantic cod (Gadus morhua) to predict optimal life histories and behaviours at different temperatures. The model assumes common trade-offs and predicts that optimal temperatures for growth and fitness lie below that for aerobic scope; aerobic scope is thus a poor predictor of fitness at high temperatures. Initially, warming expands aerobic scope, allowing for faster growth and increased reproduction. Beyond the optimal temperature for fitness, increased metabolic requirements intensify foraging and reduce survival; oxygen budgeting conflicts thus constrain successful completion of the life cycle. The model illustrates how physiological adaptations are part of a suite of traits that have coevolved.