Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Kappel is active.

Publication


Featured researches published by Christian Kappel.


Journal of Experimental Botany | 2011

Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway

Imène Hichri; François Barrieu; Jochen Bogs; Christian Kappel; Serge Delrot; Virginie Lauvergeat

Flavonoids are secondary metabolites involved in several aspects of plant development and defence. They colour fruits and flowers, favouring seed and pollen dispersal, and contribute to plant adaptation to environmental conditions such as cold or UV stresses, and pathogen attacks. Because they affect the quality of flowers (for horticulture), fruits and vegetables, and their derivatives (colour, aroma, stringency, etc.), flavonoids have a high economic value. Furthermore, these compounds possess pharmaceutical properties extremely attractive for human health. Thanks to easily detectable mutant phenotypes, such as modification of petal pigmentation and seeds exhibiting transparent testa, the enzymes involved in the flavonoid biosynthetic pathway have been characterized in several plant species. Conserved features as well as specific differences have been described. Regulation of structural gene expression appears tightly organized in a spatial and temporal way during plant development, and is orchestrated by a ternary complex involving transcription factors from the R2R3-MYB, basic helix-loop-helix (bHLH), and WD40 classes. This MYB-bHLH-WD40 (MBW) complex regulates the genes that encode enzymes specifically involved in the late steps of the pathway leading to the biosynthesis of anthocyanins and condensed tannins. Although several genes encoding transcription factors from these three families have been identified, many gaps remain in our understanding of the regulation of this biosynthetic pathway, especially about the respective roles of bHLH and WD40 proteins. A better knowledge of the regulatory mechanisms of the flavonoid pathway is likely to favour the development of new biotechnological tools for the generation of value-added plants with optimized flavonoid content.


American Journal of Enology and Viticulture | 2011

Ecophysiological, Genetic, and Molecular Causes of Variation in Grape Berry Weight and Composition: A Review

Zhan Wu Dai; Nathalie Ollat; Eric Gomès; Stéphane Decroocq; Jean-Pascal Tandonnet; Louis Bordenave; Philippe Pieri; Ghislaine Hilbert; Christian Kappel; Cornelius van Leeuwen; Philippe Vivin; Serge Delrot

Berry fresh weight and composition are under the control of complex interactions among genotype, environmental factors, and viticulture practice, which all affect not only the mean value but also the ranges of variation in berry traits. Both mean values and variation range in berry composition play a role in berry quality and, subsequently, wine typicity. This review examines recent ecophysiological, genetic, and molecular knowledge to provide better understanding of the mechanisms that influence variability in berry weight and composition. We specifically reviewed the variation range in berry weight and composition (including sugars, organic acids, and anthocyanins) among Vitis genotypes, the environmental and viticulture practices that cause variability for a given cultivar, the genetic clues underlying the genotypic variation, and the putative genes controlling berry weight and composition. Despite numerous studies comparing differences in the mean value of a berry trait among different environment conditions and viticulture practices, very few studies have explored the level of variation in response to those factors. Present genetic and molecular studies are mainly focused on identifying genes involved in the control of berry weight and composition, with few considerations of environmental factors that affect their expression. In the future, more effort should be directed toward integration of genetic and molecular work with ecophysiological approaches in an effort to gain novel insights into the cause of variability in grape fresh weight and composition.


BMC Plant Biology | 2011

Transcriptional analysis of late ripening stages of grapevine berry.

Sabine Guillaumie; Romain Fouquet; Christian Kappel; Céline Camps; Nancy Terrier; Dominique Moncomble; Jake D. Dunlevy; Christopher Davies; Paul K. Boss; Serge Delrot

BackgroundThe composition of grapevine berry at harvest is a major determinant of wine quality. Optimal oenological maturity of berries is characterized by a high sugar/acidity ratio, high anthocyanin content in the skin, and low astringency. However, harvest time is still mostly determined empirically, based on crude biochemical composition and berry tasting. In this context, it is interesting to identify genes that are expressed/repressed specifically at the late stages of ripening and which may be used as indicators of maturity.ResultsWhole bunches and berries sorted by density were collected in vineyard on Chardonnay (white cultivar) grapevines for two consecutive years at three stages of ripening (7-days before harvest (TH-7), harvest (TH), and 10-days after harvest (TH+10)). Microvinification and sensory analysis indicate that the quality of the wines made from the whole bunches collected at TH-7, TH and TH+10 differed, TH providing the highest quality wines.In parallel, gene expression was studied with Qiagen/Operon microarrays using two types of samples, i.e. whole bunches and berries sorted by density. Only 12 genes were consistently up- or down-regulated in whole bunches and density sorted berries for the two years studied in Chardonnay. 52 genes were differentially expressed between the TH-7 and TH samples. In order to determine whether these genes followed a similar pattern of expression during the late stages of berry ripening in a red cultivar, nine genes were selected for RT-PCR analysis with Cabernet Sauvignon grown under two different temperature regimes affecting the precocity of ripening. The expression profiles and their relationship to ripening were confirmed in Cabernet Sauvignon for seven genes, encoding a carotenoid cleavage dioxygenase, a galactinol synthase, a late embryogenesis abundant protein, a dirigent-like protein, a histidine kinase receptor, a valencene synthase and a putative S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase.ConclusionsThis set of up- and down-regulated genes characterize the late stages of berry ripening in the two cultivars studied, and are indirectly linked to wine quality. They might be used directly or indirectly to design immunological, biochemical or molecular tools aimed at the determination of optimal ripening in these cultivars.


PLOS ONE | 2013

Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew.

Chloé Marchive; Céline Léon; Christian Kappel; Pierre Coutos-Thévenot; Marie-France Corio-Costet; Serge Delrot; Virginie Lauvergeat

Most WRKY transcription factors activate expression of defence genes in a salicylic acid- and/or jasmonic acid-dependent signalling pathway. We previously identified a WRKY gene, VvWRKY1, which is able to enhance tolerance to fungal pathogens when it is overexpressed in tobacco. The present work analyzes the effects of VvWRKY1 overexpression in grapevine. Microarray analysis showed that genes encoding defence-related proteins were up-regulated in the leaves of transgenic 35S::VvWRKY1 grapevines. Quantitative RT-PCR analysis confirmed that three genes putatively involved in jasmonic acid signalling pathway were overexpressed in the transgenic grapes. The ability of VvWRKY1 to trans-activate the promoters of these genes was demonstrated by transient expression in grape protoplasts. The resistance to the causal agent of downy mildew, Plasmopara viticola, was enhanced in the transgenic plants. These results show that VvWRKY1 can increase resistance of grapevine against the downy mildew through transcriptional reprogramming leading to activation of the jasmonic acid signalling pathway.


Plant Physiology | 2014

The Basic Leucine Zipper Transcription Factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 Is an Important Transcriptional Regulator of Abscisic Acid-Dependent Grape Berry Ripening Processes

Philippe Nicolas; David Lecourieux; Christian Kappel; Stéphanie Cluzet; Grant R. Cramer; Serge Delrot; Fatma Lecourieux

A basic leucine zipper family transcription factor is an important transcriptional regulator of abscisic acid-dependent grape berry ripening. In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening.


BMC Plant Biology | 2009

Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: extending MapMan ontology for grapevine.

Ana Rotter; Céline Camps; Marc Lohse; Christian Kappel; Stefania Pilati; Matjaž Hren; Mark Stitt; Pierre Coutos-Thévenot; Claudio Moser; Serge Delrot; Kristina Gruden

BackgroundWhole genome transcriptomics analysis is a very powerful approach because it gives an overview of the activity of genes in certain cells or tissue types. However, biological interpretation of such results can be rather tedious. MapMan is a software tool that displays large datasets (e.g. gene expression data) onto diagrams of metabolic pathways or other processes and thus enables easier interpretation of results. The grapevine (Vitis vinifera) genome sequence has recently become available bringing a new dimension into associated research. Two microarray platforms were designed based on the TIGR Gene Index database and used in several physiological studies.ResultsTo enable easy and effective visualization of those and further experiments, annotation of Vitis vinifera Gene Index (VvGI version 5) to MapMan ontology was set up. Due to specificities of grape physiology, we have created new pictorial representations focusing on three selected pathways: carotenoid pathway, terpenoid pathway and phenylpropanoid pathway, the products of these pathways being important for wine aroma, flavour and colour, as well as plant defence against pathogens. This new tool was validated on Affymetrix microarrays data obtained during berry ripening and it allowed the discovery of new aspects in process regulation. We here also present results on transcriptional profiling of grape plantlets after exposal to the fungal pathogen Eutypa lata using Operon microarrays including visualization of results with MapMan. The data show that the genes induced in infected plants, encode pathogenesis related proteins and enzymes of the flavonoid metabolism, which are well known as being responsive to fungal infection.ConclusionThe extension of MapMan ontology to grapevine together with the newly constructed pictorial representations for carotenoid, terpenoid and phenylpropanoid metabolism provide an alternative approach to the analysis of grapevine gene expression experiments performed with Affymetrix or Operon microarrays. MapMan was first validated on an already published dataset and later used to obtain an overview of transcriptional changes in a susceptible grapevine – Eutypa lata interaction at the time of symptoms development, where we showed that the responsive genes belong to families known to be involved in the plant defence towards fungal infection (PR-proteins, enzymes of the phenylpropanoid pathway).


Proceedings of the National Academy of Sciences of the United States of America | 2012

Influenza virus binds its host cell using multiple dynamic interactions

Christian Sieben; Christian Kappel; Rong Zhu; Anna Wozniak; Christian Rankl; Peter Hinterdorfer; Helmut Grubmüller; Andreas Herrmann

Influenza virus belongs to a wide range of enveloped viruses. The major spike protein hemagglutinin binds sialic acid residues of glycoproteins and glycolipids with dissociation constants in the millimolar range [Sauter NK, et al. (1992) Biochemistry 31:9609–9621], indicating a multivalent binding mode. Here, we characterized the attachment of influenza virus to host cell receptors using three independent approaches. Optical tweezers and atomic force microscopy-based single-molecule force spectroscopy revealed very low interaction forces. Further, the observation of sequential unbinding events strongly suggests a multivalent binding mode between virus and cell membrane. Molecular dynamics simulations reveal a variety of unbinding pathways that indicate a highly dynamic interaction between HA and its receptor, allowing rationalization of influenza virus–cell binding quantitatively at the molecular level.


Journal of Experimental Botany | 2014

An update on sugar transport and signalling in grapevine

Fatma Lecourieux; Christian Kappel; David Lecourieux; Alejandra Serrano; Elizabeth Torres; Patricio Arce-Johnson; Serge Delrot

In addition to their role as a source of reduced carbon, sugars may directly or indirectly control a wide range of activities in plant cells, through transcriptional and post-translational regulation. This control has been studied in detail using Arabidopsis thaliana, where genetic analysis offers many possibilities. Much less is known about perennial woody species. For several years, various aspects of sugar sensing and signalling have been investigated in the grape (Vitis vinifera L.) berry, an organ that accumulates high concentrations of hexoses in the vacuoles of flesh cells. Here we review various aspects of this topic: the molecular basis of sugar transport and its regulation by sugars in grapevine; the functional analysis of several sugar-induced genes; the effects of some biotic and abiotic stresses on the sugar content of the berry; and finally the effects of exogenous sugar supply on the ripening process in field conditions. A picture of complex feedback and multiprocess regulation emerges from these data.


Plant and Cell Physiology | 2012

VvGOLS1 and VvHsfA2 are Involved in the Heat Stress Responses in Grapevine Berries

Jérémy Pillet; Aurélie Egert; Philippe Pieri; Fatma Lecourieux; Christian Kappel; Justine Charon; Eric Gomès; Felix Keller; Serge Delrot; David Lecourieux

Among various environmental factors, temperature is a major regulator affecting plant growth, development and fruit composition. Grapevine is the most cultivated fruit plant throughout the world, and grapes are used for wine production and human consumption. The molecular mechanisms involved in grapevine tolerance to high temperature, especially at the fruit level, are poorly understood. To better characterize the sensitivity of berries to the microenvironment, high temperature conditions were locally applied to Vitis vinifera Cabernet Sauvignon clusters. Two genes, VvGOLS1 and VvHsfA2, up-regulated by this treatment, were identified and further characterized. The expression profile of VvGOLS1 correlated positively with galactinol accumulation in heat-stressed berries. However, no galactinol derivatives, such as raffinose and stachyose, accumulated upon heat stress. Heterologous expression of VvGOLS1 in Escherichia coli showed that it encodes a functional galactinol synthase. Transient expression assays showed that the heat stress factor VvHsfA2 transactivates the promoter of VvGOLS1 in a heat stress-dependent manner. Taken together, our results highlight the intrinsic capacity of grape berries to perceive heat stress and to initiate adaptive responses, suggesting that galactinol may play a signaling role in these responses.


Journal of Experimental Botany | 2010

A transcriptomic study of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) interaction with the vascular ascomycete fungus Eutypa lata

Céline Camps; Christian Kappel; Pascal Lecomte; Céline Léon; Eric Gomès; Pierre Coutos-Thévenot; Serge Delrot

Eutypa dieback is a vascular disease that may severely affect vineyards throughout the world. In the present work, microarrays were made in order (i) to improve our knowledge of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) responses to Eutypa lata, the causal agent of Eutypa dieback; and (ii) to identify genes that may prevent symptom development. Qiagen/Operon grapevine microarrays comprising 14 500 probes were used to compare, under three experimental conditions (in vitro, in the greenhouse, and in the vineyard), foliar material of infected symptomatic plants (S+R+), infected asymptomatic plants (S–R+), and healthy plants (S–R–). These plants were characterized by symptom notation after natural (vineyard) or experimental (in vitro and greenhouse) infection, re-isolation of the fungus located in the lignified parts, and the formal identification of E. lata mycelium by PCR. Semi-quantitative real-time PCR experiments were run to confirm the expression of some genes of interest in response to E. lata. Their expression profiles were also studied in response to other grapevine pathogens (Erysiphe necator, Plasmopara viticola, and Botrytis cinerea). (i) Five functional categories of genes, that is those involved in metabolism, defence reactions, interaction with the environment, transport, and transcription, were up-regulated in S+R+ plants compared with S–R– plants. These genes, which cannot prevent infection and symptom development, are not specific since they were also up-regulated after infection by powdery mildew, downy mildew, and black rot. (ii) Most of the genes that may prevent symptom development are associated with the light phase of photosynthesis. This finding is discussed in the context of previous data on the mode of action of eutypin and the polypeptide fraction secreted by Eutypa.

Collaboration


Dive into the Christian Kappel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Gomès

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge