Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Kaufmann is active.

Publication


Featured researches published by Christian Kaufmann.


Medical and Veterinary Entomology | 2009

The invasive mosquito Aedes japonicus in Central Europe

Francis Schaffner; Christian Kaufmann; Daniel Hegglin; Alexander Mathis

Complaints about a biting pest led to the recognition of invasive Aedes (Finlaya) japonicus japonicus (Theobald) (Diptera: Culicidae) in Central Europe. Larval collections from cemetery vases revealed a colonized area of approximately 1400 km2 in northern Switzerland spreading into bordering Germany, suggesting that the mosquito has been established in this region for several years. Within this range, larvae of Ae. japonicus were recovered from more containers than the most common resident culicid species Culex pipiens. Possible introduction sites (used tyre yards and international airports) revealed few or no larvae, and the mode of introduction remains unclear. Given the vector potential of this species for arboviruses, implementation of surveillance and control measures should be considered.


Medical and Veterinary Entomology | 2011

Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for characterization of Culicoides nubeculosus biting midges.

Christian Kaufmann; Dominik Ziegler; Francis Schaffner; S. Carpenter; Valentin Pflüger; Alexander Mathis

Matrix‐assisted laser desorption/ionization time of flight mass spectrometry (MALDI‐TOF MS) has shown promise in species identification of insect species. We evaluated its potential to consistently characterize laboratory‐reared biting midges of the species Culicoides nubeculosus (Meigen) (Diptera: Ceratopogonidae). Twenty‐one reproducible potential biomarker masses for C. nubeculosus were identified under different experimental treatments. These treatments included the homogenization of insects in either water or known concentrations of formic acid. The biomarker masses were present independent of age, gender and different periods of storage of individuals in 70% ethanol (a standard preservation method). It was found that the presence of blood in females reduced the intensity of the MALDI‐TOF pattern, necessitating the removal of the abdomen before analysis. The protein profiles of a related non‐biting midge, Forcipomyia sp. (Diptera: Ceratopogonidae), and of Aedes japonicus japonicus (Theobald) (Diptera: Culicidae) mosquitoes were also examined and were distinctly different. These findings provide preliminary data to optimize future studies in differentiation of species within the Culicoides genus using MALDI‐TOF MS which is a rapid, simple, reliable and cost‐effective technique.


Insect Biochemistry and Molecular Biology | 2009

The adipokinetic hormone system in Culicinae (Diptera: Culicidae): molecular identification and characterization of two adipokinetic hormone (AKH) precursors from Aedes aegypti and Culex pipiens and two putative AKH receptor variants from A. aegypti.

Christian Kaufmann; Hans Merzendorfer; Gerd Gäde

Insect neuropeptides of the adipokinetic hormone (AKH) family induce the mobilization of energy stores to fuel flight, but also affect the nutritional balance during diapause and oogenesis. They are therefore important regulators for flight, hibernation, and reproduction in mosquitoes including those that transmit human pathogens. In this study, we identified and analyzed the genes encoding two AKH preprohormones in the Yellow fever mosquito, Aedes aegypti: Aedae-AKH-I encodes the octapeptide pELFTPSWa and Aedae-AKH-II the decapeptide pEVTFSRDWNAa. Identical AKHs were identified in the West Nile virus vector, Culex pipiens, whose genes were characterized in this study as Culpi-AKH-I and Culpi-AKH-II. Using Northern blot, transcript expression was shown in A. aegypti, for Aedae-AKH-I in the head/thorax tissues of pupae and females, as well as in the abdomen of adult males; Aedae-AKH-II was only expressed in adults. In an immunocytological study using an AKH-antibody, the corpus cardiacum (CC), the intrinsic CC-cells (X-cells), the nervi corporis cardiaci, cells in the brain and thoracic ganglia were stained. In addition, two splice variants of the AKH-receptor gene were characterized in A. aegypti, (Aedae-AKHR-I and -II). RT-PCR revealed that both variants of these typical G-protein-coupled receptors were expressed in all life stages. Aedae-AKHR-I expression was also detected in the ovaries, indicating once more the influence of the AKH/AKHR system during the insects oogenesis. Based on phylogenetic data, we postulate two closely related types of AKH-receptors that could bind selectively the two AKH peptides found in A. aegypti.


Parasitology | 2012

Identification of field-caught Culicoides biting midges using matrix-assisted laser desorption/ionization time of flight mass spectrometry.

Christian Kaufmann; Francis Schaffner; Dominik Ziegler; Valentin Pflüger; Alexander Mathis

Culicoides biting midges are of great importance as vectors of pathogens and elicitors of allergy. As an alternative for the identification of these tiny insects, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) was evaluated. Protein mass fingerprints were determined for 4-5 field-caught reference (genetically confirmed) individuals of 12 Culicoides species from Switzerland, C. imicola from France, laboratory-reared C. nubeculosus and a non-biting midge. Reproducibility and accuracy of the database was tested in a validation study by analysing 108 mostly field-caught target Culicoides midges and 3 specimens from a non-target species. A reference database of biomarker mass sets containing between 24 and 38 masses for the different species could be established. Automated database-based identification was achieved for 101 of the 108 specimens. The remaining 7 midges required manual full comparison with the reference spectra yielding correct identification for 6 specimens and an ambiguous result for the seventh individual. Specimens of the non-target species did not yield identification. Protein profiling by MALDI-TOF, which is compatible with morphological and genetic identification of specimens, can be used as an alternative, quick and inexpensive tool to accurately identify Culicoides biting midges collected in the field.


Veterinary Parasitology | 2012

Molecular characterization of Swiss Ceratopogonidae (Diptera) and evaluation of real-time PCR assays for the identification of Culicoides biting midges

Claudia E. Wenk; Christian Kaufmann; Francis Schaffner; Alexander Mathis

Biting midges of the genus Culicoides (Diptera, Ceratopogonidae) are vectors of several viruses of veterinary relevance, and they can cause insect bite hypersensitivity. As the morphological identification of these tiny insects is a difficult task in many cases, alternative approaches are expedient. With the aim to develop real-time PCRs, we determined partial mitochondrial cytochrome oxidase I gene (mt COI) sequences from 380 Culicoides midges representing three regions of Switzerland, namely the Alps, Midland north of the Alps (Atlantic climate), and South of the Alps (Mediterranean climate). The same region was also sequenced from non-biting midges of the genera Atrichopogon, Brachypogon, Dasyhelea, Forcipomyia and Serromyia. A total of 21 Culicoides species were identified by morphology. Sequence variability (haplotypes) was observed in all species. For each of C. grisescens and C. obsoletus, a novel cryptic species was identified. Whereas all individuals of C. grisescens and of the cryptic C. obsoletus species (O2) originated only from Alpine sites, the known C. obsoletus (O1) species was found in all three regions. Further, a sister taxon to C. pulicaris was identified based on the mt COI sequences and named Culicoides sp. Alignments of available mtCOI sequences from Ceratopogonidae (GenBank, this study) were used to design real-time PCR primers and probes to distinguish C. chiopterus, C. deltus, C. dewulfi, C. grisescens (including the cryptic species), C. imicola, C. lupicaris, C. obsoletus O1, C. obsoletus O2, C. pulicaris, C. scoticus and Culicoides sp. Specificities of primers and probes was tested with cloned targets representing 1 to 4 haplotypes of 18 Culicoides spp. and 1 haplotype each from 4 other Ceratopogonidae. No cross-reactivity was observed when plasmid template representing 5 × 10(6) gene copies was tested, but it was evident (Ct values ≤ 30) in few instances when plasmid template representing 5 × 10(9) gene copies was utilized, the latter corresponding to the total gene copy number (as determined in this study) in 20 insects. The sensitivities of two assays (C. imicola, C. grisescens) were tested by spiking single insects into pools of 99 or 999, randomly selected non-target Ceratopogonidae (with approx. 90% Culicoides specimens). In the pools of 100, Ct values were in the range of those obtained with single insects when employing 1% of the isolated DNA, whereas the sensitivity with the pools of 1000 was low, presumably due to the low DNA concentrations obtained with a protocol that seems inadequate for these larger pools. Thus, the assays as described are applicable for the specific identification of biting midges in small pools. Primers and probes of this study were devised to be suitable for multiplexed assays but these evaluations await to be performed.


Parasites & Vectors | 2014

Rapid protein profiling facilitates surveillance of invasive mosquito species

Francis Schaffner; Christian Kaufmann; Valentin Pflüger; Alexander Mathis

BackgroundInvasive aedine mosquito species have become a major issue in many parts of the world as most of them are recognised vectors or potentially involved in transmission of pathogens. Surveillance of these mosquitoes (e.g. Ae. aegypti, Yellow fever mosquito, Aedes albopictus, Asian tiger mosquito) is mainly done by collecting eggs using ovitraps and by identification of the larvae hatched in the laboratory. In order to replace this challenging and laborious procedure, we have evaluated matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) for easy and rapid species identification.MethodsIndividual protein profiles were generated using five eggs each of nine aedine species (Ae. aegypti, Ae. albopictus, Ae. atropalpus, Ae. cretinus, Ae. geniculatus, Ae. japonicus, Ae. koreicus, Ae. phoeniciae, Ae. triseriatus) from various geographical origins, and species-specific biomarker mass sets could be generated. A blinded validation using our reference data base for automated egg identification was performed. In addition, pools of 10 aedine eggs (132 two-species and 18 three-species pools) in different ratios were evaluated.ResultsSpecific biomarker mass sets comprising 18 marker masses could be generated for eggs of nine container-inhabiting aedine species, including all the major invasive and indigenous species of Europe and North America. Two additional masses shared by all investigated aedine species are used as internal calibrators. Identification of single eggs was highly accurate (100% specificity, 98.75% sensitivity), and this method is also of value for the identification of species in pools of ten eggs. When mixing two or three species, all were identified in all pools in at least 2 or 1 of the 4 loaded replicates, respectively, if the “lesser abundant” species in the pool accounted for three or more eggs.ConclusionsMALDI-TOF MS, which is widely applied for routine identification of microorganisms in clinical microbiology laboratories, is also suited for robust, low-cost and high throughput identification of mosquito vectors in surveillance programmes. This tool can further be developed to include a wide spectrum of arthropods but also other Metazoa for which surveillance is required, and might become the method of choice for their centralised identification via online platforms.


Parasites & Vectors | 2012

Spatio-temporal occurrence of Culicoides biting midges in the climatic regions of Switzerland, along with large scale species identification by MALDI-TOF mass spectrometry

Christian Kaufmann; Irene C Steinmann; Daniel Hegglin; Francis Schaffner; Alexander Mathis

BackgroundCulicoides biting midges are incriminated as biological vectors of a number of viruses, e.g. bluetongue virus. In order to define vector-free periods/areas and to assess the vectorial role of the various Culicoides species, a comprehensive knowledge on their spatio-temporal occurrence is required.MethodsBiting midges were monitored on farm sites with livestock in the defined climatic regions, including high altitudes, of Switzerland by overnight trapping at 12 locations once a week over three years using UV-light traps. Based on morphological features, they were separated into three groups (i.e. Obsoletus, Pulicaris, other Culicoides spp.), and identification to the species level was achieved by protein profiling using MALDI-TOF mass spectrometry.ResultsAround 550,000 biting midges in total were collected, revealing a dominance (82 to 99%) of the Obsoletus group species up to an altitude of 1,200 m and of the Pulicaris group species above 1,500 m (85% at the highest trapping site at 2,130 m). The maximum number of midges collected in a summer night (756 to 19,682) as well as the total number of midges caught over three years (from 6,933 to 149,439) varied highly among the sites, whereas the annual variation in total midge abundance at the locations was statistically insignificant. MALDI-TOF MS of 100 randomly selected individual biting midges per trapping site yielded high quality spectra for 1,187 of the 1,200 (98.9%) specimens of which 1,173 could be assigned to one of the 15 Culicoides species for which biomarker mass sets are available in the reference database.ConclusionsThere are no biting midge-free zones in all of the agriculturally utilized areas (including alpine summer pastures) of Switzerland. Annual variations of midge numbers at the sampled locations were low, indicating that monitoring of midges should preferably be done by investigating a large number of sites for one season instead of few locations for extended periods of time. High throughput species identification of midges by MALDI-TOF MS is feasible, and this technique adds to other recently developed methods for the identification of midges (PCRs in various formats, interactive identification keys), facilitating epidemiological and biological in-depth studies of these important insects.


Parasitology | 2013

Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for the identification of ceratopogonid and culicid larvae.

I. C. Steinmann; Valentin Pflüger; Francis Schaffner; Alexander Mathis; Christian Kaufmann

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) was evaluated for the rapid identification of ceratopogonid larvae. Optimal sample preparation as evaluated with laboratory-reared biting midges Culicoides nubeculosus was the homogenization of gut-less larvae in 10% formic acid, and analysis of 0.2 mg/ml crude protein homogenate mixed with SA matrix at a ratio of 1:1.5. Using 5 larvae each of 4 ceratopogonid species (C. nubeculosus, C. obsoletus, C. decor, and Dasyhelea sp.) and of 2 culicid species (Aedes aegypti, Ae. japonicus), biomarker mass sets between 27 and 33 masses were determined. In a validation study, 67 larvae belonging to the target species were correctly identified by automated database-based identification (91%) or manual full comparison (9%). Four specimens of non-target species did not yield identification. As anticipated for holometabolous insects, the biomarker mass sets of adults cannot be used for the identification of larvae, and vice versa, because they share only very few similar masses as shown for C. nubeculosus, C. obsoletus, and Ae. japonicus. Thus, protein profiling by MALDI-TOF as a quick, inexpensive and accurate alternative tool is applicable to identify insect larvae of vector species collected in the field.


Research in Veterinary Science | 2011

In vivo and in vitro propagation and transmission of Toggenburg orbivirus

Jeannette Planzer; Christian Kaufmann; Gabriella Worwa; Dolores Gavier-Widén; Martin A. Hofmann; Valérie Chaignat; Barbara Thür

The Toggenburg orbivirus (TOV), a recently discovered virus related to bluetongue virus (BTV), has been identified in goats in Switzerland, Italy and Germany. Isolation of TOV in vitro has not yet been achieved and the transmission mechanisms are still unknown. In the experimental infection of pregnant goats described here, TOV could not be detected in secretion/excretion samples or fetal blood. Material from the goat experiment was used as inoculum for propagating the virus in vitro. To enhance the infectivity of TOV several modified protocols, e.g. pretreatment of the virus with trypsin, polyethylene glycol-mediated infection and lipofection were applied. Isolation of TOV, attempts to infect Culicoides nubeculosus by feeding TOV-positive blood and intracerebral inoculation of newborn mice were unsuccessful. The results of these studies suggest that TOV requires specific but different factors than other BTVs for infection and replication outside of its natural caprine host.


Malaria Journal | 2012

Anopheles plumbeus (Diptera: Culicidae) in Europe : a mere nuisance mosquito or potential malaria vector?

Francis Schaffner; Isabelle Thiery; Christian Kaufmann; Agnès Zettor; Christian Lengeler; Alexander Mathis; Catherine Bourgouin

BackgroundAnopheles plumbeus has been recognized as a minor vector for human malaria in Europe since the beginning of the 20th century. In recent years this tree hole breeding mosquito species appears to have exploited novel breeding sites, including large and organically rich man-made containers, with consequently larger mosquito populations in close vicinity to humans. This lead to investigate whether current populations of An. plumbeus would be able to efficiently transmit Plasmodium falciparum, the parasite responsible for the most deadly form of malaria.MethodsAnopheles plumbeus immatures were collected from a liquid manure pit in Switzerland and transferred as adults to the CEPIA (Institut Pasteur, France) where they were fed on P. falciparum gametocytes produced in vitro. Anopheles gambiae mosquitoes served as controls. Development of P. falciparum in both mosquito species was followed by microscopical detection of oocysts on mosquito midguts and by sporozoite detection in the head/thorax by PCR and microscopy.ResultsA total of 293 wild An. plumbeus females from four independent collections successfully fed through a membrane on blood containing P. falciparum gametocytes. Oocysts were observed in mosquito midguts and P. falciparum DNA was detected in head-thorax samples in all four experiments, demonstrating, on a large mosquito sample, that An. plumbeus is indeed receptive to P. falciparum NF54 and able to produce sporozoites. Importantly, the proportion of sporozoites-infected An. plumbeus was almost similar to that of An. gambiae (31 to 88% An. plumbeus versus 67 to 97% An. gambiae). However, the number of sporozoites produced was significantly lower in infected An. plumbeus.ConclusionThe results show that a sample of field-caught An. plumbeus has a moderate to high receptivity towards P. falciparum. Considering the increased mobility of humans between Europe and malaria endemic countries and changes in environment and climate, these data strongly suggest that An. plumbeus could act as a vector for malaria and thus significantly contribute to increasing the malaria transmission risk in Central-Western Europe. In locations showing high vulnerability to the presence of gametocyte carriers, the risk of transmission of malaria by An. plumbeus should be considered.

Collaboration


Dive into the Christian Kaufmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birthe Hald

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge