Christian Kellner
University of Kiel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Kellner.
Blood | 2010
Katrin Birkholz; Michael Schwenkert; Christian Kellner; Stefanie Gross; Georg H. Fey; Beatrice Schuler-Thurner; Gerold Schuler; Niels Schaft; Jan Dörrie
The use of dendritic cells (DCs) in therapeutic cancer vaccination requires their loading with tumor-specific antigen(s). DEC-205, a phagocytosis receptor mediating antigen uptake, is associated with CD8(+) T-cell responses in mice. Here we fused an anti-DEC-205scFv to an HLA-DP4-restricted epitope from the tumor antigen MAGE-A3, and examined the suitability and efficacy of DEC-205 to deliver a helper epitope to human monocyte-derived DCs (moDCs). The construct specifically bound DEC-205 on human moDCs without negative impact on DC phenotype and function. We measured antigen presentation with specific autologous CD4(+) T cells, generated by TCR-RNA transfection. DEC-205 targeting resulted in significant major histocompatibility complex class II-restricted antigen presentation, and was superior to loading DCs by electroporation of mRNA encoding endosome-targeted MAGE-A3-DCLAMP or by direct peptide pulsing. Anti-DEC-205scFv-MAGE-A3 was presented 100 times more efficiently than the control constructs. DC maturation before or during incubation with anti-DEC-205scFv-MAGE-A3 reduced the interleukin-10/interleukin-2 ratio. Moreover, we successfully applied the DEC-205 targeting strategy to moDCs from malignant melanoma patients. Again, DEC-205-targeted mature DCs (mDCs) presented the antigen more efficiently than peptide-pulsed DCs and maintained their stimulatory capacity after cryoconservation. Thus, DEC-205 targeting represents a feasible and effective method to deliver helper epitopes to DCs in anticancer vaccine strategies, which may also be suitable for DC targeting in vivo.
British Journal of Haematology | 2010
Markus Kügler; Christoph Stein; Christian Kellner; Kristin Mentz; Domenica Saul; Michael Schwenkert; Ingo Schubert; Heiko Singer; Fuat S. Oduncu; Bernhard Stockmeyer; Andreas Mackensen; Georg H. Fey
Two trivalent constructs consisting of single‐chain Fv antibody fragments (scFvs) specific for the interleukin‐3 receptor α chain (CD123), CD33 and the Fcγ‐receptor III (CD16) were designed and characterized for the elimination of acute myeloid leukaemia (AML) cells. The dual targeting single‐chain Fv triplebody (sctb) [123 × ds16 × 33] and the mono targeting sctb [123 × ds16 × 123] both specifically bound their respective target antigens and were stable in human serum at 37°C for at least 5 d. Both constructs induced potent antibody‐dependent cellular cytotoxicity (ADCC) of two different AML‐derived CD33‐ and CD123 double‐positive cell lines in the low picomolar range using isolated mononuclear cells (MNCs) as effector cells. In these experiments the dual targeting molecule produced significantly stronger lysis than the mono targeting agent. In addition, the sctbs showed a high potency in mediating ADCC of primary leukaemia cells isolated from peripheral blood or bone marrow of seven AML patients. Hence, these novel molecules displayed potent anti‐leukaemic effects against AML cells in vitro and represent attractive candidates for further preclinical development.
Journal of Immunotherapy | 2008
Christian Kellner; Joerg Bruenke; Julia Stieglmaier; Michael Schwemmlein; Michael Schwenkert; Heiko Singer; Kristin Mentz; Matthias Peipp; Peter Lang; Fuat S. Oduncu; Bernhard Stockmeyer; Georg H. Fey
A novel bispecific antibody-derived recombinant protein targeting leukemias and lymphomas was designed, a single-chain Fv triple body (sctb) consisting of 1 polypeptide chain with 3 scFvs connected in tandem. The distal scFvs were specific for the tumor antigen CD19, and the central scFv for the trigger molecule CD16 (FcγRIII) on natural killer (NK) cells and macrophages. We had previously built a disulphide stabilized (ds) bsscFv [19×16] with monovalent binding for CD19 from ds components. The sctb ds[19×16×19] also used ds components and displayed 3-fold greater avidity for CD19 than the bsscFv (KD=13 vs. 42 nM), whereas both had equal affinity for CD16 (KD=58 nM). Plasma half-lives in mice were 4 and 2 hours for the sctb and the bsscFv, respectively. In antibody-dependent cellular cytotoxicity reactions with human mononuclear cells as effectors, the sctb promoted equal lysis of leukemic cell lines and primary cells from leukemia and lymphoma patients at 10-fold to 40-fold lower concentrations than the bsscFv. This new format may also be applicable to a variety of other tumor antigens and effector molecules. With half-maximum effective concentrations (EC50) in the low picomolar range, the sctb ds[19×16×19] is an attractive candidate for further preclinical evaluation.
British Journal of Haematology | 2010
Christoph Stein; Christian Kellner; Markus Kügler; Nina Reiff; Kristin Mentz; Michael Schwenkert; Bernhard Stockmeyer; Andreas Mackensen; Georg H. Fey
Four new single‐chain Fv antibody fragments (scFvs) specific for the human leucocyte surface antigen CD123 (interleukin‐3 receptor α) were generated to achieve preferential targeting of leukaemia stem cells (LSCs) in acute myeloid leukaemia (AML). The scFvs were isolated from a phage display library generated with spleen RNA from mice, immunized with a fusion protein consisting of the extracellular domain of CD123 and the Fc domain of a human immunoglobulin G1. The scFvs displayed CD123‐specific binding on tumour cells (binding constants (KD) 4·5–101 nmol/l). The scFv with the highest affinity was used to design two cell death‐inducing molecules. First, an immunotoxin, a fusion protein with truncated Pseudomonas Exotoxin A, induced potent apoptosis of AML‐derived MOLM‐13 and SKNO‐1 cells at nanomolar concentrations. Second, the fusion to another scFv, specific for the low affinity Fcγ‐receptor III (CD16), created a bispecific single chain Fv (bsscFv). This bsscFv [123 × ds16] mediated potent lysis of AML‐derived MOLM‐13, THP‐1 and SKNO‐1 cells in antibody‐dependent cellular cytotoxicity (ADCC) reactions at picomolar concentrations. The recruitment of CD16‐positive effector cells for the lysis of AML cells via CD123 represents a novel combination with attractive prospects for future clinical testing.
Journal of Immunotherapy | 2010
Heiko Singer; Christian Kellner; Harald Lanig; Michael Aigner; Bernhard Stockmeyer; Fuat S. Oduncu; Michael Schwemmlein; Christoph Stein; Kristin Mentz; Andreas Mackensen; Georg H. Fey
Single-chain Fv triplebodies (sctb), consisting of a single polypeptide chain with 3 single-chain antibody variable fragments connected in tandem, were generated as antileukemic agents. A CD19-specific sctb of this format has previously been shown to be superior to a bispecific single-chain Fv antibody fragment (bsscFv) for the elimination of leukemic B-lineage cells, but corresponding targeted agents for the treatment of acute myeloid leukemia are still lacking. For this purpose, both a bsscFv and a sctb specific for CD33 and the trigger molecule CD16 (FcγRIII) were produced. The sctb displayed 3.5-fold greater avidity for CD33 than the bsscFv 33xds16, whereas both had close to equal affinity for CD16. In antibody-dependent cellular cytotoxicity (ADCC) reactions with human mononuclear cells as effectors, both the bsscFv 33xds16 and the sctb induced lysis of tumor cells with half maximum effective concentrations (EC50) in the low picomolar range. It is interesting to note that the sctb promoted equal lysis of human leukemia-derived cell lines at 10 to 200-fold lower concentrations than the bsscFv. Both molecules mediated ADCC of primary patient cells. In conclusion, both the bsscFv 33xds16 and the sctb 33xds16x33 eliminated acute myeloid leukemia cells in ADCC reactions, but the novel sctb format showed significantly greater specific activity.
Cancer Immunology, Immunotherapy | 2008
Julia Stieglmaier; Edwin Bremer; Christian Kellner; Tanja M. Liebig; Bram ten Cate; Matthias Peipp; Hendrik Schulze-Koops; Matthias Pfeiffer; Hans-Jörg Bühring; Johann Greil; Fuat S. Oduncu; Bertold Emmerich; Georg H. Fey; W. Helfrich
Although the treatment outcome of lymphoid malignancies has improved in recent years by the introduction of transplantation and antibody-based therapeutics, relapse remains a major problem. Therefore, new therapeutic options are urgently needed. One promising approach is the selective activation of apoptosis in tumor cells by the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). This study investigated the pro-apoptotic potential of a novel TRAIL fusion protein designated scFvCD19:sTRAIL, consisting of a CD19-specific single-chain Fv antibody fragment (scFv) fused to the soluble extracellular domain of TRAIL (sTRAIL). Potent apoptosis was induced by scFvCD19:sTRAIL in several CD19-positive tumor cell lines, whereas normal blood cells remained unaffected. In mixed culture experiments, selective binding of scFvCD19:sTRAIL to CD19-positive cells resulted in strong induction of apoptosis in CD19-negative bystander tumor cells. Simultaneous treatment of CD19-positive cell lines with scFvCD19:sTRAIL and valproic acid (VPA) or Cyclosporin A induced strongly synergistic apoptosis. Treatment of patient-derived acute B-lymphoblastic leukemia (B-ALL) and chronic B-lymphocytic leukemia (B-CLL) cells resulted in strong tumoricidal activity that was further enhanced by combination with VPA. In addition, scFvCD19:sTRAIL prevented engraftment of human Nalm-6 cells in xenotransplanted NOD/Scid mice. The pre-clinical data presented here warrant further investigation of scFvCD19:sTRAIL as a potential new therapeutic agent for CD19-positive B-lineage malignancies.
Cancer Research | 2014
Hans-Heinrich Oberg; Matthias Peipp; Christian Kellner; Susanne Sebens; Sarah Krause; Domantas Petrick; Sabine Adam-Klages; Christoph Röcken; Thomas Becker; Ilka Vogel; Dietrich Weisner; Sandra Freitag-Wolf; Martin Gramatzki; Dieter Kabelitz; Daniela Wesch
The ability of human γδ T cells from healthy donors to kill pancreatic ductal adenocarcinoma (PDAC) in vitro and in vivo in immunocompromised mice requires the addition of γδ T-cell-stimulating antigens. In this study, we demonstrate that γδ T cells isolated from patients with PDAC tumor infiltrates lyse pancreatic tumor cells after selective stimulation with phosphorylated antigens. We determined the absolute numbers of γδ T-cell subsets in patient whole blood and applied a real-time cell analyzer to measure their cytotoxic effector function over prolonged time periods. Because phosphorylated antigens did not optimally enhance γδ T-cell cytotoxicity, we designed bispecific antibodies that bind CD3 or Vγ9 on γδ T cells and Her2/neu (ERBB2) expressed by pancreatic tumor cells. Both antibodies enhanced γδ T-cell cytotoxicity with the Her2/Vγ9 antibody also selectively enhancing release of granzyme B and perforin. Supporting these observations, adoptive transfer of γδ T cells with the Her2/Vγ9 antibody reduced growth of pancreatic tumors grafted into SCID-Beige immunocompromised mice. Taken together, our results show how bispecific antibodies that selectively recruit γδ T cells to tumor antigens expressed by cancer cells illustrate the tractable use of endogenous γδ T cells for immunotherapy.
mAbs | 2011
Ingo Schubert; Christian Kellner; Christoph Stein; Markus Kügler; Michael Schwenkert; Domenica Saul; Kristin Mentz; Heiko Singer; Bernhard Stockmeyer; Wolfgang Hillen; Andreas Mackensen; Georg H. Fey
A single-chain triplebody (sctb) 33-ds16-ds19 comprising two distal single-chain Fv fragments (scFvs) specific for the lymphoid antigen CD19 and the myeloid antigen CD33 flanking a central scFv specific for CD16, which is the low affinity Fc-receptor (FcγRIII) present on natural killer cells and macrophages, was produced and its properties were investigated. CD33 and CD19 in combina-tion are present on acute leukemiablasts with mixed lineage phenotype, but not on normal human hematopoietic cells. For comparison, two bispecific scFvs (bsscFvs), ds19-ds16 and 33-ds16, with monovalent binding to CD19 and CD33, respectively, were also studied. The sctb 33-ds16-ds19 specifically interacted with all 3 antigens. On the antigen double-positive cell line BV-173, the sctb bound with 2-fold greater avidity than bsscFv ds19-ds16 (KD = 21 vs. 42 nM) and with 1.4-fold greater avidity than bsscFv 33-ds16 (KD = 29 nM). All 3 fusion proteins had similar affinity for CD16 and sufficient thermic stability in human serum. In antibody-dependent cellular cytotoxicity (ADCC) reactions with human mononuclear cells as effectors, the sctb promoted lysis of BV-173 cells at 23-fold lower concentrations than bsscFv ds19-ds16 and at 1.4-fold lower concentrations than bsscFv 33-ds16. The sctb also mediated potent ADCC of the antigen double-positive mixed lineage leukemia cell line SEM, and the half-maximal concentration EC50 for BV-173 cells was 7 pM. Therefore, CD19 and CD33 are present on the surface of these leukemic cell lines such that they can be connected by a single sctb molecule, permitting the recruitment of NK cells via CD16 and tumor cell lysis.
Journal of Immunological Methods | 2011
Roland Repp; Christian Kellner; Anja Muskulus; Matthias Staudinger; Sahar Mohseni Nodehi; Pia Glorius; Dalia Akramiene; Michael Dechant; Georg H. Fey; Patrick van Berkel; Jan G. J. van de Winkel; Paul Parren; Thomas Valerius; Martin Gramatzki; Matthias Peipp
Protein- or glyco-engineering of antibody molecules can be used to enhance Fc-mediated effector functions. ScFv-Fc fusion proteins (scFv-Fc) represent interesting antibody derivatives due to their relatively simple design and increased tissue penetration. Here, the impact of protein- and glyco-engineering on ADCC potency of a panel of human IgG1-based scFv-Fc was tested. Three matched sets of scFv-Fc variants targeting CD7, CD20 or HLA class II and optimized for CD16a binding by mutagenesis, lack of core-fucose, or their combination, were generated and functionally tested in comparison to the corresponding wild type scFv-Fc. Antigen binding activity was not compromised by altered glycosylation or Fc mutagenesis, whereas Fc binding to CD16a was significantly enhanced in the order: non-core fucosylated/Fc-mutated double-engineered≫Fc-mutated≥non-core-fucosylated>wild-type IgG1-Fc. All engineered variants triggered potent ADCC with up to 100-fold reduced EC50 values compared to non-engineered variants. Interestingly, double-engineered variants were similarly effective in triggering ADCC compared to single-engineered variants irrespective of their 1 log greater CD16a binding affinity. Thus, these data demonstrate that protein- and glyco-engineering enhances NK-cell mediated ADCC of scFv-Fc similarly and show that enhancing CD16a affinity beyond a certain threshold does not result in a further increase of NK-cell mediated ADCC.
Journal of Immunology | 2012
Stefanie Derer; Philip Bauer; Stefan Lohse; Andreas H. Scheel; Sven Berger; Christian Kellner; Matthias Peipp; Thomas Valerius
The epidermal growth factor receptor (EGFR) is a widely expressed Ag that is successfully targeted in tumor patients by mAbs or tyrosine kinase inhibitors. A clinical study in non-small cell lung cancer patients demonstrated a positive correlation between EGFR expression levels and the therapeutic efficacy of the EGFR mAb cetuximab. However, the impact of EGFR expression on the different mechanisms of action (MoAs) triggered by the EGFR mAb has not been defined. In this study, BHK-21 cells were stably transfected to express different EGFR levels, which were quantified by immunofluorescence and immunohistochemistry and compared with EGFR levels of clinical non-small cell lung cancer samples. These cells were used to systematically investigate the impact of target Ag expression levels on Fab- or Fc-mediated MoAs of EGFR mAb. A negative correlation between EGFR levels and potency of Fab-mediated MoA was observed. Interestingly, Ab-dependent cell-mediated cytotoxicity (ADCC) by NK cells, monocytes, or polymorphonuclear cells as well as complement-dependent cytotoxicity positively correlated with the number of EGFR molecules. In comparison with ADCC by mononuclear cells, polymorphonuclear cell-mediated ADCC and complement-dependent cytotoxicity required higher EGFR expression levels and higher mAb concentrations to trigger significant tumor cell killing. This correlation between EGFR expression levels and Fc-mediated MoA was confirmed in an independent panel of human tumor cell lines carrying diverse genetic alterations. Furthermore, RNA interference-induced knockdown experiments reinforced the impact of EGFR expression on tumor cell killing by EGFR mAb. In conclusion, these results suggest that EGFR expression levels may determine distinct patterns of MoAs that contribute to the therapeutic efficacy of EGFR mAb.