Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Kirisits is active.

Publication


Featured researches published by Christian Kirisits.


Radiotherapy and Oncology | 2011

Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer

Richard Pötter; Petra Georg; Johannes Dimopoulos; Magdalena Grimm; Daniel Berger; Nicole Nesvacil; Dietmar Georg; Maximilian Schmid; Alexander Reinthaller; Alina Sturdza; Christian Kirisits

Background To analyse the overall clinical outcome and benefits by applying protocol based image guided adaptive brachytherapy combined with 3D conformal external beam radiotherapy (EBRT) ± chemotherapy (ChT). Methods Treatment schedule was EBRT with 45–50.4 Gy ± concomitant cisplatin chemotherapy plus 4 × 7 Gy High Dose Rate (HDR) brachytherapy. Patients were treated in the “protocol period” (2001–2008) with the prospective application of the High Risk CTV concept (D90) and dose volume constraints for organs at risk including biological modelling. Dose volume adaptation was performed with the aim of dose escalation in large tumours (prescribed D90 > 85 Gy), often with inserting additional interstitial needles. Dose volume constraints (D2cc) were 70–75 Gy for rectum and sigmoid and 90 Gy for bladder. Late morbidity was prospectively scored, using LENT/SOMA Score. Disease outcome and treatment related late morbidity were evaluated and compared using actuarial analysis. Findings One hundred and fifty-six consecutive patients (median age 58 years) with cervix cancer FIGO stages IB–IVA were treated with definitive radiotherapy in curative intent. Histology was squamous cell cancer in 134 patients (86%), tumour size was >5 cm in 103 patients (66%), lymph node involvement in 75 patients (48%). Median follow-up was 42 months for all patients. Interstitial techniques were used in addition to intracavitary brachytherapy in 69/156 (44%) patients. Total prescribed mean dose (D90) was 93 ± 13 Gy, D2cc 86 ± 17 Gy for bladder, 65 ± 9 Gy for rectum and 64 ± 9 Gy for sigmoid. Complete remission was achieved in 151/156 patients (97%). Overall local control at 3 years was 95%; 98% for tumours 2–5 cm, and 92% for tumours >5 cm (p = 0.04), 100% for IB, 96% for IIB, 86% for IIIB. Cancer specific survival at 3 years was overall 74%, 83% for tumours 2–5 cm, 70% for tumours >5 cm, 83% for IB, 84% for IIB, 52% for IIIB. Overall survival at 3 years was in total 68%, 72% for tumours 2–5 cm, 65% for tumours >5 cm, 74% for IB, 78% for IIB, 45% for IIIB. In regard to late morbidity in total 188 grade 1 + 2 and 11 grade 3 + 4 late events were observed in 143 patients. G1 + 2/G3 + 4 events for bladder were n = 32/3, for rectum n = 14/5, for bowel (including sigmoid) n = 3/0, for vagina n = 128/2, respectively. Interpretation 3D conformal radiotherapy ± chemotherapy plus image (MRI) guided adaptive intracavitary brachytherapy including needle insertion in advanced disease results in local control rates of 95–100% at 3 years in limited/favourable (IB/IIB) and 85–90% in large/poor response (IIB/III/IV) cervix cancer patients associated with a moderate rate of treatment related morbidity. Compared to the historical Vienna series there is relative reduction in pelvic recurrence by 65–70% and reduction in major morbidity. The local control improvement seems to have impact on CSS and OS. Prospective clinical multi-centre studies are mandatory to evaluate these challenging mono-institutional findings.


Radiotherapy and Oncology | 2009

Dose–effect relationship for local control of cervical cancer by magnetic resonance image-guided brachytherapy

Johannes Dimopoulos; Richard Pötter; Stefan Lang; Elena Fidarova; Petra Georg; Wolfgang Dörr; Christian Kirisits

BACKGROUND AND PURPOSE To analyse dose-response relationships for local control of cervical cancer after MR image-guided brachytherapy (IGBT) based on dose-volume histogram parameters. METHODS AND MATERIALS The analysis includes 141 patients with cervix cancer (stages IB-IVA) treated with 45-50.4 Gy EBRT+/-cisplatin plus 4 x 7 Gy IGBT. Gross tumour volume (GTV), high risk clinical target volume (HR CTV) and intermediate risk CTV (IR CTV) were delineated and DVH parameters (D90, D100) were assessed. Doses were converted to the equivalent dose in 2 Gy (EQD2) using linear-quadratic model (alpha/beta=10 Gy). Groups of patients were formed according to tumour size at diagnosis (GTV(D)) of 2-5 cm (group 1) or >5 cm (2), with subgroups of the latter for HR CTV size at first IGBT 2-5 cm (2a) or >5 cm (2b). Dose-response dependence for local recurrence was evaluated by logit analysis. RESULTS Eighteen local recurrences in the true pelvis were observed. Dose-response analyses revealed a significant effect of HR CTV D100 (p=0.02) and D90 (p=0.005). The ED50-values for tumour control were 33+/-15 Gy (D100) and 45+/-19 Gy (D90). ED90-values were 67 Gy (95% confidence interval [50;104]) and 86 Gy [77;113], respectively. CONCLUSIONS A significant dependence of local control on D100 and D90 for HR CTV was found. Tumour control rates of >90% can be expected at doses >67 Gy and 86 Gy, respectively.


Radiotherapy and Oncology | 2012

Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy.

Johannes Dimopoulos; Peter Petrow; Kari Tanderup; Primoz Petric; Daniel Berger; Christian Kirisits; Erik Morre Pedersen; Erik Van Limbergen; Christine Haie-Meder; Richard Pötter

The GYN GEC-ESTRO working group issued three parts of recommendations and highlighted the pivotal role of MRI for the successful implementation of 3D image-based cervical cancer brachytherapy (BT). The main advantage of MRI as an imaging modality is its superior soft tissue depiction quality. To exploit the full potential of MRI for the better ability of the radiation oncologist to make the appropriate choice for the BT application technique and to accurately define the target volumes and the organs at risk, certain MR imaging criteria have to be fulfilled. Technical requirements, patient preparation, as well as image acquisition protocols have to be tailored to the needs of 3D image-based BT. The present recommendation is focused on the general principles of MR imaging for 3D image-based BT. Methods and parameters have been developed and progressively validated from clinical experience from different institutions (IGR, Universities of Vienna, Leuven, Aarhus and Ljubljana) and successfully applied during expert meetings, contouring workshops, as well as within clinical and interobserver studies. It is useful to perform pelvic MRI scanning prior to radiotherapy (“Pre-RT-MRI examination”) and at the time of BT (“BT MRI examination”) with one MR imager. Both low and high-field imagers, as well as both open and close magnet configurations conform to the requirements of 3D image-based cervical cancer BT. Multiplanar (transversal, sagittal, coronal and oblique image orientation) T2-weighted images obtained with pelvic surface coils are considered as the golden standard for visualisation of the tumour and the critical organs. The use of complementary MRI sequences (e.g. contrast-enhanced T1-weighted or 3D isotropic MRI sequences) is optional. Patient preparation has to be adapted to the needs of BT intervention and MR imaging. It is recommended to visualise and interpret the MR images on dedicated DICOM-viewer workstations, which should also assist the contouring procedure. Choice of imaging parameters and BT equipment is made after taking into account aspects of interaction between imaging and applicator reconstruction, as well as those between imaging, geometry and dose calculation. In a prospective clinical context, to implement 3D image-based cervical cancer brachytherapy and to take advantage of its full potential, it is essential to successfully meet the MR imaging criteria described in the present recommendations of the GYN GEC-ESTRO working group.


Brachytherapy | 2012

American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part II: high-dose-rate brachytherapy.

Akila N. Viswanathan; Sushil Beriwal; Jennifer F. De Los Santos; D. Jeffrey Demanes; David K. Gaffney; Jorgen L. Hansen; Ellen L. Jones; Christian Kirisits; Bruce R. Thomadsen; Beth Erickson

PURPOSE This report presents an update to the American Brachytherapy Society (ABS) high-dose-rate (HDR) brachytherapy guidelines for locally advanced cervical cancer. METHODS Members of the ABS with expertise in cervical cancer formulated updated guidelines for HDR brachytherapy using tandem and ring, ovoids, cylinder, or interstitial applicators for locally advanced cervical cancer. These guidelines were written based on medical evidence in the literature and input of clinical experts in gynecologic brachytherapy. RESULTS The ABS affirms the essential curative role of tandem-based brachytherapy in the management of locally advanced cervical cancer. Proper applicator selection, insertion, and imaging are fundamental aspects of the procedure. Three-dimensional imaging with magnetic resonance or computed tomography or radiographic imaging may be used for treatment planning. Dosimetry must be performed after each insertion before treatment delivery. Applicator placement, dose specification, and dose fractionation must be documented, quality assurance measures must be performed, and followup information must be obtained. A variety of dose/fractionation schedules and methods for integrating brachytherapy with external-beam radiation exist. The recommended tumor dose in 2-Gray (Gy) per fraction radiobiologic equivalence (normalized therapy dose) is 80-90Gy, depending on tumor size at the time of brachytherapy. Dose limits for normal tissues are discussed. CONCLUSION These guidelines update those of 2000 and provide a comprehensive description of HDR cervical cancer brachytherapy in 2011.


Radiotherapy and Oncology | 2010

Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy.

Taran Paulsen Hellebust; Christian Kirisits; Daniel Berger; Jose Perez-Calatayud; Marisol De Brabandere; Astrid A.C. de Leeuw; Isabelle Dumas; Robert Hudej; Gerry Lowe; Rachel Wills; Kari Tanderup

Image-guided brachytherapy in cervical cancer is increasingly replacing X-ray based dose planning. In image-guided brachytherapy the geometry of the applicator is extracted from the patient 3D images and introduced into the treatment planning system; a process referred to as applicator reconstruction. Due to the steep brachytherapy dose gradients, reconstruction errors can lead to major dose deviations in target and organs at risk. Appropriate applicator commissioning and reconstruction methods must be implemented in order to minimise uncertainties and to avoid accidental errors. Applicator commissioning verifies the location of source positions in relation to the applicator by using auto-radiography and imaging. Sectional imaging can be utilised in the process, with CT imaging being the optimal modality. The results from the commissioning process can be stored as library applicators. The importance of proper commissioning is underlined by the fact that errors in library files result in systematic errors for clinical treatment plans. While the source channel is well visualised in CT images, applicator reconstruction is more challenging when using MR images. Availability of commercial dummy sources for MRI is limited, and image artifacts may occur with titanium applicators. The choice of MR sequence is essential for optimal visualisation of the applicator. Para-transverse imaging (oriented according to the applicator) with small slice thickness (< or =5 mm) is recommended or alternatively 3D MR sequences with isotropic voxel sizes. Preferably, contouring and reconstruction should be performed in the same image series in order to avoid fusion uncertainties. Clear and correct strategies for the applicator reconstruction will ensure that reconstruction uncertainties have limited impact on the delivered dose. Under well-controlled circumstances the reconstruction uncertainties are in general smaller than other brachytherapy uncertainties such as contouring and organ movement.


International Journal of Radiation Oncology Biology Physics | 2009

Dose–Volume Histogram Parameters and Local Tumor Control in Magnetic Resonance Image–Guided Cervical Cancer Brachytherapy

Johannes Dimopoulos; Stefan Lang; Christian Kirisits; Elena Fidarova; Daniel Berger; Petra Georg; Wolfgang Dörr; Richard Pötter

PURPOSE To investigate the value of dose-volume histogram (DVH) parameters for predicting local control in magnetic resonance (MR) image-guided brachytherapy (IGBT) for patients with cervical cancer. METHODS AND MATERIALS Our study population consists of 141 patients with cervical cancer (Stages IB-IVA) treated with 45-50 Gy external beam radiotherapy plus four times 7 Gy IGBT with or without cisplatin. Gross tumor volume (GTV), high-risk clinical target volume (HRCTV), and intermediate-risk clinical target volume (IRCTV) were contoured, and DVH parameters (minimum dose delivered to 90% of the volume of interest [D90] and D100) were assessed. Doses were converted to the equivalent dose in 2 Gy (EQD2) by applying the linear quadratic model (alpha/beta = 10 Gy). Groups were defined for patients with or without local recurrence (LR) in the true pelvis for tumor size at diagnosis (GTV at diagnosis [GTVD] of 2-5 cm (Group 1) or greater than 5 cm (Group 2) and for tumor size response at IGBT (HRCTV) of 2-5 cm (Group 2a) or greater than 5 cm (Group 2b). RESULTS Eighteen LRs were observed. The most important DVH parameters correlated with LR were the D90 and D100 for HRCTV. Mean D90 and D100 values for HRCTV were 86 +/- 16 and 65 +/- 10 Gy, respectively. The D90 for HRCTV greater than 87 Gy resulted in an LR incidence of 4% (3 of 68) compared with 20% (15 of 73) for D90 less than 87 Gy. The effect was most pronounced in the tumor group (Group 2b). CONCLUSIONS We showed an increase in local control in IGBT in patients with cervical cancer with the dose delivered, which can be expressed by the D90 and D100 for HRCTV. Local control rates greater than 95% can be achieved if the D90 (EQD2) for HRCTV is 87 Gy or greater.


International Journal of Radiation Oncology Biology Physics | 2012

Dose Effect Relationship for Late Side Effects of the Rectum and Urinary Bladder in Magnetic Resonance Image-Guided Adaptive Cervix Cancer Brachytherapy

Petra Georg; Richard Pötter; Dietmar Georg; Stefan Lang; Johannes Dimopoulos; Alina Sturdza; Daniel Berger; Christian Kirisits; Wolfgang Dörr

PURPOSE To establish dose-response relationships for late side effects of the rectum and bladder in cervix cancer patients after magnetic resonance image-guided adaptive brachytherapy (IGABT). METHODS AND MATERIALS A cohort of 141 patients was treated with 45 to 50.4 Gy with or without cisplatin plus 4 fractions of 7 Gy IGABT. Doses for the most exposed 2, 1, and 0.1-cm(3) (D(2 cc), D(1 cc), D(0.1 cc)) volumes of the rectum and bladder were converted into the equivalent dose in 2 Gy fractions (EQD2), using a linear quadratic model (α/β = 3 Gy). Late side effects were prospectively assessed (using late effects in normal tissues subjective, objective, management and analytic [LENT SOMA]) scales. Dose-response relationships were determined by logit analyses. RESULTS Eleven patients developed rectal side effects, and 23 patients had urinary side effects. A significant dose effect was found for all rectal dose-volume histogram (DVH) parameters for patients with side effect grades of 1 to 4 but was only significant for D(2 cc) and D(1 cc) for grades ≥ 2. The ED10 values for D(2 cc) were 73 Gy for grades 1 to 4 and 78 Gy for grades 2 to 4 rectal morbidity. For bladder side effects, a significant dose effect was shown for all DVH parameters for complication grades ≥ 2; the respective ED10 was 101 Gy. CONCLUSIONS Well-defined dose-response curves could be established for D(2 cc) in the rectum and the urinary bladder.


International Journal of Radiation Oncology Biology Physics | 2011

Dose-volume histogram parameters and late side effects in magnetic resonance image-guided adaptive cervical cancer brachytherapy.

Petra Georg; Stefan Lang; Johannes Dimopoulos; Wolfgang Dörr; Alina Sturdza; Daniel Berger; Dietmar Georg; Christian Kirisits; Richard Pötter

PURPOSE To evaluate the predictive value of dose-volume histogram (DVH) parameters for late side effects of the rectum, sigmoid colon, and bladder in image-guided brachytherapy for cervix cancer patients. METHODS AND MATERIALS A total of 141 patients received external-beam radiotherapy and image-guided brachytherapy with or without chemotherapy. The DVH parameters for the most exposed 2, 1, and 0.1 cm(3) (D(2cc), D(1cc), and D(0.1cc)) of the rectum, sigmoid, and bladder, as well as International Commission on Radiation Units and Measurements point doses (D(ICRU)) were computed. Total doses were converted to equivalent doses in 2 Gy by applying the linear-quadratic model (α/β = 3 Gy). Late side effects were prospectively assessed using the Late Effects in Normal Tissues-Subjective, Objective, Management and Analytic score. The following patient groups were defined: Group 1: no side effects (Grade 0); Group 2: side effects (Grade 1-4); Group 3: minor side effects (Grade 0-1); and Group 4: major side effects (Grade 2-4). RESULTS The median follow-up was 51 months. The overall 5-year actuarial side effect rates were 12% for rectum, 3% for sigmoid, and 23% for bladder. The mean total D(2cc) were 65 ± 12 Gy for rectum, 62 ± 12 Gy for sigmoid, and 95 ± 22 Gy for bladder. For rectum, statistically significant differences were observed between Groups 1 and 2 in all DVH parameters and D(ICRU). Between Groups 3 and 4, no difference was observed for D(0.1cc). For sigmoid, significant differences were observed for D(2cc) and D(1cc), but not for D(0.1cc) in all groups. For bladder, significant differences were observed for all DVH parameters only comparing Groups 3 and 4. No differences were observed for D(ICRU). CONCLUSIONS The parameters D(2cc) and D(1cc) have a good predictive value for rectal toxicity. For sigmoid, no prediction could be postulated because of limited data. In bladder, DVH parameters were predictive only for major toxicity.


Radiotherapy and Oncology | 2014

Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM

Christian Kirisits; Mark J. Rivard; Dimos Baltas; Facundo Ballester; Marisol De Brabandere; Rob van der Laarse; Yury Niatsetski; P. Papagiannis; Taran Paulsen Hellebust; Jose Perez-Calatayud; Kari Tanderup; Jack Venselaar; Frank-André Siebert

Background and purpose A substantial reduction of uncertainties in clinical brachytherapy should result in improved outcome in terms of increased local control and reduced side effects. Types of uncertainties have to be identified, grouped, and quantified. Methods A detailed literature review was performed to identify uncertainty components and their relative importance to the combined overall uncertainty. Results Very few components (e.g., source strength and afterloader timer) are independent of clinical disease site and location of administered dose. While the influence of medium on dose calculation can be substantial for low energy sources or non-deeply seated implants, the influence of medium is of minor importance for high-energy sources in the pelvic region. The level of uncertainties due to target, organ, applicator, and/or source movement in relation to the geometry assumed for treatment planning is highly dependent on fractionation and the level of image guided adaptive treatment. Most studies to date report the results in a manner that allows no direct reproduction and further comparison with other studies. Often, no distinction is made between variations, uncertainties, and errors or mistakes. The literature review facilitated the drafting of recommendations for uniform uncertainty reporting in clinical BT, which are also provided. The recommended comprehensive uncertainty investigations are key to obtain a general impression of uncertainties, and may help to identify elements of the brachytherapy treatment process that need improvement in terms of diminishing their dosimetric uncertainties. It is recommended to present data on the analyzed parameters (distance shifts, volume changes, source or applicator position, etc.), and also their influence on absorbed dose for clinically-relevant dose parameters (e.g., target parameters such as D90 or OAR doses). Publications on brachytherapy should include a statement of total dose uncertainty for the entire treatment course, taking into account the fractionation schedule and level of image guidance for adaptation. Conclusions This report on brachytherapy clinical uncertainties represents a working project developed by the Brachytherapy Physics Quality Assurances System (BRAPHYQS) subcommittee to the Physics Committee within GEC-ESTRO. Further, this report has been reviewed and approved by the American Association of Physicists in Medicine.


Radiotherapy and Oncology | 2016

Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study

Alina Sturdza; Richard Pötter; L. Fokdal; Christine Haie-Meder; Li Tee Tan; R. Mazeron; Primoz Petric; Barbara Segedin; Ina M. Jürgenliemk-Schulz; C. Nomden; Charles Gillham; O. McArdle; Erik Van Limbergen; H. Janssen; Peter Hoskin; Gerry Lowe; Ekkasit Tharavichitkul; E. Villafranca; Umesh Mahantshetty; Petra Georg; K. Kirchheiner; Christian Kirisits; Kari Tanderup; Jacob Christian Lindegaard

PURPOSE Image guided brachytherapy (IGBT) for locally advanced cervical cancer allows dose escalation to the high-risk clinical target volume (HRCTV) while sparing organs at risk (OAR). This is the first comprehensive report on clinical outcome in a large multi-institutional cohort. PATIENTS AND METHODS From twelve centres 731 patients, treated with definitive EBRT±concurrent chemotherapy followed by IGBT, were analysed. Kaplan-Meier estimates at 3/5years were calculated for local control (LC, primary endpoint), pelvic control (PC), overall survival (OS), cancer specific survival (CSS). In 610 patients, G3-4 late toxicity (CTCAEv3.0) was reported. RESULTS Median follow up was 43months, percent of patients per FIGO stage IA/IB/IIA 22.8%, IIB 50.4%, IIIA-IVB 26.8%. 84.8% had squamous cell carcinomas; 40.5% lymph node involvement. Mean EBRT dose was 46±2.5Gy; 77.4% received concurrent chemotherapy. Mean D90 HRCTV was 87±15Gy (EQD210), mean D2cc was: bladder 81±22Gy, rectum 64±9Gy, sigmoid 66±10Gy and bowel 64±9Gy (all EQD23). The 3/5-year actuarial LC, PC, CSS, OS were 91%/89%, 87%/84%, 79%/73%, 74%/65%. Actuarial LC at 3/5years for IB, IIB, IIIB was 98%/98%, 93%/91%, 79%/75%. Actuarial PC at 3/5years for IB, IIB, IIIB was 96%/96%, 89%/87%, 73%/67%. Actuarial 5-year G3-G5 morbidity was 5%, 7%, 5% for bladder, gastrointestinal tract, vagina. CONCLUSION IGBT combined with radio-chemotherapy leads to excellent LC (91%), PC (87%), OS (74%), CSS (79%) with limited severe morbidity.

Collaboration


Dive into the Christian Kirisits's collaboration.

Top Co-Authors

Avatar

Richard Pötter

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Daniel Berger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Johannes Dimopoulos

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Dietmar Georg

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Alina Sturdza

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Nicole Nesvacil

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Lang

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Petra Georg

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Boris Pokrajac

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge