Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Koelsche is active.

Publication


Featured researches published by Christian Koelsche.


Acta Neuropathologica | 2015

ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an "integrated" diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma.

David E. Reuss; Felix Sahm; Daniel Schrimpf; Benedikt Wiestler; David Capper; Christian Koelsche; Leonille Schweizer; Andrey Korshunov; David T. W. Jones; Volker Hovestadt; Michel Mittelbronn; Jens Schittenhelm; Christel Herold-Mende; Andreas Unterberg; Michael Platten; Michael Weller; Wolfgang Wick; Stefan M. Pfister; Andreas von Deimling

Diffuse gliomas are represented in the 2007 WHO classification as astrocytomas, oligoastrocytomas and oligodendrogliomas of grades II and III and glioblastomas WHO grade IV. Molecular data on these tumors have a major impact on prognosis and therapy of the patients. Consequently, the inclusion of molecular parameters in the WHO definition of brain tumors is being planned and has been forwarded as the “ISN-Haarlem” consensus. We, here, analyze markers of special interest including ATRX, IDH and 1p/19q codeletion in a series of 405 adult patients. Among the WHO 2007 classified tumors were 152 astrocytomas, 61 oligodendrogliomas, 63 oligoastrocytomas and 129 glioblastomas. Following the concepts of the “ISN-Haarlem”, we rediagnosed the series to obtain “integrated” diagnoses with 155 tumors being astrocytomas, 100 oligodendrogliomas and 150 glioblastomas. In a subset of 100 diffuse gliomas from the NOA-04 trial with long-term follow-up data available, the “integrated” diagnosis had a significantly greater prognostic power for overall and progression-free survival compared to WHO 2007. Based on the “integrated” diagnoses, loss of ATRX expression was close to being mutually exclusive to 1p/19q codeletion, with only 2 of 167 ATRX-negative tumors exhibiting 1p/19q codeletion. All but 4 of 141 patients with loss of ATRX expression and diffuse glioma carried either IDH1 or IDH2 mutations. Interestingly, the majority of glioblastoma patients with loss of ATRX expression but no IDH mutations exhibited an H3F3A mutation. Further, all patients with 1p/19 codeletion carried a mutation in IDH1 or IDH2. We present an algorithm based on stepwise analysis with initial immunohistochemistry for ATRX and IDH1-R132H followed by 1p/19q analysis followed by IDH sequencing which reduces the number of molecular analyses and which has a far better association with patient outcome than WHO 2007.


Acta Neuropathologica | 2013

Meningeal hemangiopericytoma and solitary fibrous tumors carry the NAB2-STAT6 fusion and can be diagnosed by nuclear expression of STAT6 protein

Leonille Schweizer; Christian Koelsche; Felix Sahm; Rosario M. Piro; David Capper; David E. Reuss; Stefan Pusch; Antje Habel; Jochen Meyer; Tanja Göck; David T. W. Jones; Christian Mawrin; Jens Schittenhelm; Albert J. Becker; Stephanie Heim; Matthias Simon; Christel Herold-Mende; Gunhild Mechtersheimer; Werner Paulus; Rainer König; Otmar D. Wiestler; Stefan M. Pfister; Andreas von Deimling

Non-central nervous system hemangiopericytoma (HPC) and solitary fibrous tumor (SFT) are considered by pathologists as two variants of a single tumor entity now subsumed under the entity SFT. Recent detection of frequent NAB2-STAT6 fusions in both, HPC and SFT, provided additional support for this view. On the other hand, current neuropathological practice still distinguishes between HPC and SFT. The present study set out to identify genes involved in the formation of meningeal HPC. We performed exome sequencing and detected the NAB2-STAT6 fusion in DNA of 8/10 meningeal HPC thereby providing evidence of close relationship of these tumors with peripheral SFT. Due to the considerable effort required for exome sequencing, we sought to explore surrogate markers for the NAB2-STAT6 fusion protein. We adopted the Duolink proximity ligation assay and demonstrated the presence of NAB2-STAT6 fusion protein in 17/17 HPC and the absence in 15/15 meningiomas. More practical, presence of the NAB2-STAT6 fusion protein resulted in a strong nuclear signal in STAT6 immunohistochemistry. The nuclear reallocation of STAT6 was detected in 35/37 meningeal HPC and 25/25 meningeal SFT but not in 87 meningiomas representing the most important differential diagnosis. Tissues not harboring the NAB2-STAT6 fusion protein presented with nuclear expression of NAB2 and cytoplasmic expression of STAT6 proteins. In conclusion, we provide strong evidence for meningeal HPC and SFT to constitute variants of a single entity which is defined by NAB2-STAT6 fusion. In addition, we demonstrate that this fusion can be rapidly detected by STAT6 immunohistochemistry which shows a consistent nuclear reallocation. This immunohistochemical assay may prove valuable for the differentiation of HPC and SFT from other mesenchymal neoplasms.


Acta Neuropathologica | 2014

Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma

Felix Sahm; David E. Reuss; Christian Koelsche; David Capper; Jens Schittenhelm; Stephanie Heim; David T. W. Jones; Stefan M. Pfister; Christel Herold-Mende; Wolfgang Wick; Wolf Mueller; Christian Hartmann; Werner Paulus; Andreas von Deimling

Astrocytoma and oligodendroglioma are histologically and genetically well-defined entities. The majority of astrocytomas harbor concurrent TP53 and ATRX mutations, while most oligodendrogliomas carry the 1p/19q co-deletion. Both entities share high frequencies of IDH mutations. In contrast, oligoastrocytomas (OA) appear less clearly defined and, therefore, there is an ongoing debate whether these tumors indeed constitute an entity or whether they represent a mixed bag containing both astrocytomas and oligodendrogliomas. We investigated 43 OA diagnosed in different institutions employing histology, immunohistochemistry and in situ hybridization addressing surrogates for the molecular genetic markers IDH1R132H, TP53, ATRX and 1p/19q loss. In all but one OA the combination of nuclear p53 accumulation and ATRX loss was mutually exclusive with 1p/19q co-deletion. In 31/43 OA, only alterations typical for oligodendroglioma were observed, while in 11/43 OA, only indicators for mutations typical for astrocytomas were detected. A single case exhibited a distinct pattern, nuclear expression of p53, ATRX loss, IDH1 mutation and partial 1p/19q loss. However, this was the only patient undergoing radiotherapy prior to surgery, possibly contributing to the acquisition of this uncommon combination. In OA with oligodendroglioma typical alterations, the portions corresponding to astrocytic part were determined as reactive, while in OA with astrocytoma typical alterations the portions corresponding to oligodendroglial differentiation were neoplastic. These data provide strong evidence against the existence of an independent OA entity.


Lancet Oncology | 2017

DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis

Felix Sahm; Daniel Schrimpf; Damian Stichel; David T. W. Jones; Thomas Hielscher; Sebastian Schefzyk; Konstantin Okonechnikov; Christian Koelsche; David E. Reuss; David Capper; Dominik Sturm; Hans Georg Wirsching; Anna Sophie Berghoff; Peter Baumgarten; Annekathrin Kratz; Kristin Huang; Annika K. Wefers; Volker Hovestadt; Martin Sill; Hayley Patricia Ellis; Kathreena M. Kurian; Ali Fuat Okuducu; Christine Jungk; Katharina Drueschler; Matthias Schick; Melanie Bewerunge-Hudler; Christian Mawrin; Marcel Seiz-Rosenhagen; Ralf Ketter; Matthias Simon

BACKGROUND The WHO classification of brain tumours describes 15 subtypes of meningioma. Nine of these subtypes are allotted to WHO grade I, and three each to grade II and grade III. Grading is based solely on histology, with an absence of molecular markers. Although the existing classification and grading approach is of prognostic value, it harbours shortcomings such as ill-defined parameters for subtypes and grading criteria prone to arbitrary judgment. In this study, we aimed for a comprehensive characterisation of the entire molecular genetic landscape of meningioma to identify biologically and clinically relevant subgroups. METHODS In this multicentre, retrospective analysis, we investigated genome-wide DNA methylation patterns of meningiomas from ten European academic neuro-oncology centres to identify distinct methylation classes of meningiomas. The methylation classes were further characterised by DNA copy number analysis, mutational profiling, and RNA sequencing. Methylation classes were analysed for progression-free survival outcomes by the Kaplan-Meier method. The DNA methylation-based and WHO classification schema were compared using the Brier prediction score, analysed in an independent cohort with WHO grading, progression-free survival, and disease-specific survival data available, collected at the Medical University Vienna (Vienna, Austria), assessing methylation patterns with an alternative methylation chip. FINDINGS We retrospectively collected 497 meningiomas along with 309 samples of other extra-axial skull tumours that might histologically mimic meningioma variants. Unsupervised clustering of DNA methylation data clearly segregated all meningiomas from other skull tumours. We generated genome-wide DNA methylation profiles from all 497 meningioma samples. DNA methylation profiling distinguished six distinct clinically relevant methylation classes associated with typical mutational, cytogenetic, and gene expression patterns. Compared with WHO grading, classification by individual and combined methylation classes more accurately identifies patients at high risk of disease progression in tumours with WHO grade I histology, and patients at lower risk of recurrence among WHO grade II tumours (p=0·0096) from the Brier prediction test). We validated this finding in our independent cohort of 140 patients with meningioma. INTERPRETATION DNA methylation-based meningioma classification captures clinically more homogenous groups and has a higher power for predicting tumour recurrence and prognosis than the WHO classification. The approach presented here is potentially very useful for stratifying meningioma patients to observation-only or adjuvant treatment groups. We consider methylation-based tumour classification highly relevant for the future diagnosis and treatment of meningioma. FUNDING German Cancer Aid, Else Kröner-Fresenius Foundation, and DKFZ/Heidelberg Institute of Personalized Oncology/Precision Oncology Program.


Journal of the National Cancer Institute | 2016

TERT Promoter Mutations and Risk of Recurrence in Meningioma

Felix Sahm; Daniel Schrimpf; Adriana Olar; Christian Koelsche; David E. Reuss; Juliane Bissel; Annekathrin Kratz; David Capper; Sebastian Schefzyk; Thomas Hielscher; Qianghu Wang; Erik P. Sulman; Sebastian Adeberg; Arend Koch; Ali Fuat Okuducu; Stefanie Brehmer; Jens Schittenhelm; Albert J. Becker; Benjamin Brokinkel; Melissa Schmidt; Theresa Ull; Konstantinos Gousias; Almuth F. Kessler; Katrin Lamszus; Jürgen Debus; Christian Mawrin; Yoo Jin Kim; Matthias Simon; Ralf Ketter; Werner Paulus

The World Health Organization (WHO) classification and grading system attempts to predict the clinical course of meningiomas based on morphological parameters. However, because of high interobserver variation of some criteria, more reliable prognostic markers are required. Here, we assessed the TERT promoter for mutations in the hotspot regions C228T and C250T in meningioma samples from 252 patients. Mutations were detected in 16 samples (6.4% across the cohort, 1.7%, 5.7%, and 20.0% of WHO grade I, II, and III cases, respectively). Data were analyzed by t test, Fishers exact test, log-rank test, and Cox proportional hazard model. All statistical tests were two-sided. Within a mean follow-up time in surviving patients of 68.1 months, TERT promoter mutations were statistically significantly associated with shorter time to progression (P < .001). Median time to progression among mutant cases was 10.1 months compared with 179.0 months among wild-type cases. Our results indicate that the inclusion of molecular data (ie, analysis of TERT promoter status) into a histologically and genetically integrated classification and grading system for meningiomas increases prognostic power. Consequently, we propose to incorporate the assessment of TERT promoter status in upcoming grading schemes for meningioma.


Acta Neuropathologica | 2013

AKT1E17K mutations cluster with meningothelial and transitional meningiomas and can be detected by SFRP1 immunohistochemistry

Felix Sahm; Juliane Bissel; Christian Koelsche; Leonille Schweizer; David Capper; David E. Reuss; Katja Böhmer; Ulrike Lass; Tanja Göck; Katrin Kalis; Jochen Meyer; Antje Habel; Stefanie Brehmer; Michel Mittelbronn; David T. W. Jones; Jens Schittenhelm; Steffi Urbschat; Ralf Ketter; Stephanie Heim; Christian Mawrin; Johannes A. Hainfellner; Anna Sophie Berghoff; Matthias Preusser; Albert J. Becker; Christel Herold-Mende; Andreas Unterberg; Christian Hartmann; Philipp Kickingereder; V. Peter Collins; Stefan M. Pfister

The activating E17K mutation in the AKT1 gene has been detected in several tumor entities. Currently several clinical studies with specific AKT1 inhibitors are under way. To determine whether AKT1 mutations are involved in human tumors of the nervous system, we examined a series of 1,437 tumors including 391 primary intracranial brain tumors and 1,046 tumors of the coverings of the central and peripheral nervous system. AKT1E17K mutations were exclusively seen in meningiomas and occurred in 65 of 958 of these tumors. A strong preponderance was seen in the variant of meningothelial meningioma WHO grade I of basal and spinal localization. In contrast, AKT1E17K mutations were rare in WHO grade II and absent in WHO grade III meningiomas. In order to more effectively detect this mutation, we tested for immunohistochemical markers associated with this alteration. We observed strong up-regulation of SFRP1 expression in all meningiomas with AKT1E17K mutation and in HEK293 cells after transfection with mutant AKT1E17K, but not in meningiomas and HEK293 cells lacking this mutation.


Brain Pathology | 2014

BRAF-Mutated Pleomorphic Xanthoastrocytoma is Associated with Temporal Location, Reticulin Fiber Deposition and CD34 Expression

Christian Koelsche; Felix Sahm; Adelheid Wöhrer; Astrid Jeibmann; Jens Schittenhelm; Patricia Kohlhof; Matthias Preusser; Bernd F. M. Romeike; Hildegard Dohmen-Scheufler; Christian Hartmann; Michel Mittelbronn; Albert J. Becker; Andreas von Deimling; David Capper

BRAF V600E mutation and homozygous deletion of CDKN2A (p16) are frequent molecular alterations in pleomorphic xanthoastrocytomas (PXAs). We investigated 49 PXAs for clinical, histological and immunohistochemical characteristics related to BRAF mutation status. BRAF mutation was detected by immunohistochemical assay and DNA sequencing in 38/49 (78%) tumors. All but one PXA located in the temporal lobe harbored a BRAF V600E mutation (23/24; 96%) compared with 10/19 nontemporal PXAs (53%; P = 0.0009). Histological and immunohistochemical analysis demonstrated increased reticulin deposition (76% vs. 27%; P = 0.003) and a more frequent expression of CD34 in BRAF‐mutant PXAs (76% vs. 27%; P = 0.003).


Histopathology | 2014

Nuclear relocation of STAT6 reliably predicts NAB2-STAT6 fusion for the diagnosis of solitary fibrous tumour.

Christian Koelsche; Leonille Schweizer; Marcus Renner; Arne Warth; David T. W. Jones; Felix Sahm; David E. Reuss; David Capper; Thomas Knösel; Birte Schulz; Iver Petersen; Alexis Ulrich; Eva Renker; Burkhard Lehner; Stefan M. Pfister; Peter Schirmacher; Andreas von Deimling; Gunhild Mechtersheimer

Nuclear relocation of STAT6 has been shown in tumours with NAB2–STAT6 fusion, and has been proposed as an ancillary marker for the diagnosis of solitary fibrous tumours (SFTs). The aim of this study was to verify the utility of STAT6 immunohistology in diagnosing SFT.


Acta Neuropathologica | 2016

Methylation-based classification of benign and malignant peripheral nerve sheath tumors

Manuel Röhrich; Christian Koelsche; Daniel Schrimpf; David Capper; Felix Sahm; Annekathrin Kratz; Jana Reuss; Volker Hovestadt; David T. W. Jones; Melanie Bewerunge-Hudler; Albert Becker; Joachim Weis; Christian Mawrin; Michel Mittelbronn; Arie Perry; Victor F. Mautner; Gunhild Mechtersheimer; Christian Hartmann; Ali Fuat Okuducu; Mirko Arp; Marcel Seiz-Rosenhagen; Daniel Hänggi; Stefanie Heim; Werner Paulus; Jens Schittenhelm; Rezvan Ahmadi; Christel Herold-Mende; Andreas Unterberg; Stefan M. Pfister; Andreas von Deimling

AbstractThe vast majority of peripheral nerve sheath tumors derive from the Schwann cell lineage and comprise diverse histological entities ranging from benign schwannomas and neurofibromas to high-grade malignant peripheral nerve sheath tumors (MPNST), each with several variants. There is increasing evidence for methylation profiling being able to delineate biologically relevant tumor groups even within the same cellular lineage. Therefore, we used DNA methylation arrays for methylome- and chromosomal profile-based characterization of 171 peripheral nerve sheath tumors. We analyzed 28 conventional high-grade MPNST, three malignant Triton tumors, six low-grade MPNST, four epithelioid MPNST, 33 neurofibromas (15 dermal, 8 intraneural, 10 plexiform), six atypical neurofibromas, 43 schwannomas (including 5 NF2 and 5 schwannomatosis associated cases), 11 cellular schwannomas, 10 melanotic schwannomas, 7 neurofibroma/schwannoma hybrid tumors, 10 nerve sheath myxomas and 10 ganglioneuromas. Schwannomas formed different epigenomic subgroups including a vestibular schwannoma subgroup. Cellular schwannomas were not distinct from conventional schwannomas. Nerve sheath myxomas and neurofibroma/schwannoma hybrid tumors were most similar to schwannomas. Dermal, intraneural and plexiform neurofibromas as well as ganglioneuromas all showed distinct methylation profiles. Atypical neurofibromas and low-grade MPNST were indistinguishable with a common methylation profile and frequent losses of CDKN2A. Epigenomic analysis finds two groups of conventional high-grade MPNST sharing a frequent loss of neurofibromin. The larger of the two groups shows an additional loss of trimethylation of histone H3 at lysine 27 (H3K27me3). The smaller one retains H3K27me3 and is found in spinal locations. Sporadic MPNST with retained neurofibromin expression did not form an epigenetic group and most cases could be reclassified as cellular schwannomas or soft tissue sarcomas. Widespread immunohistochemical loss of H3K27me3 was exclusively seen in MPNST of the main methylation cluster, which defines it as an additional useful marker for the differentiation of cellular schwannoma and MPNST.


The FASEB Journal | 2008

Identification of a nuclear localization signal in suppressor of cytokine signaling 1

Andrea Baetz; Christian Koelsche; Julia Strebovsky; Klaus Heeg; Alexander H. Dalpke

Suppressor of cytokine signaling (SOCS) proteins are inducible feedback inhibitors of janus kinase and signal transducer and activators of transcription signaling pathways. In addition, SOCS1 has been identified to regulate stability of nuclear NF‐ΚB subunits. However, details about the regulation of the nuclear pool of SOCS1 are unknown. Using different experimental approaches, we observed that SOCS1 but no further SOCS family members localized to the nucleus when expressed in various cell lines. Nuclear transport was confirmed for endogenous SOCS1 in macrophages stimulated with IFN‐γ. Sequence analysis revealed a bipartite nuclear localization signal (NLS) located between the src‐homology 2 (SH2) domain and the SOCS box of SOCS1. Deletion of this region, introduction of a series of R/A point mutations, or substitution of this sequence with the respective region of SOCS3 resulted in loss of nuclear localization. Fusion of the SOCS1‐NLS to cytokine‐inducible SH2 region containing protein (CIS) resulted in nuclear localization of this otherwise cytoplasmic protein. SOCS1 mutants with loss of nuclear localization were still effective in suppressing IFN‐α‐mediated STAT1 tyrosine phosphorylation. However, they showed decreased inhibition of IFN‐γ‐mediated induction of CD54. The results identify a hitherto unknown transport of SOCS1 into the nucleus which extends the spectrum of SOCS1 inhibitory activity.— Baetz, A., Koelsche, C., Strebovsky, J., Heeg, K., Dalpke, A. H. Identification of a nuclear localization signal in suppressor of cytokine signaling 1. FASEB J. 22, 4296–4305 (2008)

Collaboration


Dive into the Christian Koelsche's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas von Deimling

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

David Capper

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

David E. Reuss

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

David T. W. Jones

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Daniel Schrimpf

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Stefan M. Pfister

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrey Korshunov

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge