Christian Kumpf
Forschungszentrum Jülich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Kumpf.
New Journal of Physics | 2010
Ingo Kröger; Benjamin Stadtmüller; Christoph Stadler; Johannes Ziroff; Mario Kochler; Andreas Stahl; Florian Pollinger; Tien-Lin Lee; J. Zegenhagen; F. Reinert; Christian Kumpf
The growth of high-quality thin films is a key issue in the ability to design electronic devices based on organic materials and to tune their properties. In this context, the interfaces between metals and organic films play a decisive role. Here, we report on the interface formation between copper-phthalocyanine (CuPc) and an Ag(111) surface using various complementary methods. High-resolution low-energy electron diffraction revealed a rich phase diagram for this system with disordered (two-dimensional (2D)-gas-like) and ordered structures (commensurate and point-on-line). In particular, a continuous change in lattice parameters with increasing coverage was found for long-range ordered structures, indicating a substrate-mediated repulsive intermolecular interaction similar to the case of tin-phthalocyanine/Ag(111). Chemisorptive bonding to the substrate was found by x-ray standing waves and ultraviolet photoelectron spectroscopy, and this weakened with increasing coverage at low temperature. This remarkable effect is correlated to a shift in the highest occupied molecular orbital (HOMO) and a HOMO-1 split off band to higher binding energies. Based on our experimental results, we present a comprehensive study of the adsorption behavior of CuPc/Ag(111), including the mechanisms for phase formation and molecular interaction.
Physical Review Letters | 2015
J. Sforzini; Lydia Nemec; T. Denig; Benjamin Stadtmüller; T.-L. Lee; Christian Kumpf; Serguei Soubatch; U. Starke; Patrick Rinke; Volker Blum; F. C. Bocquet; F. S. Tautz
We measure the adsorption height of hydrogen-intercalated quasifreestanding monolayer graphene on the (0001) face of 6H silicon carbide by the normal incidence x-ray standing wave technique. A density functional calculation for the full (6√3×6√3)-R30° unit cell, based on a van der Waals corrected exchange correlation functional, finds a purely physisorptive adsorption height in excellent agreement with experiments, a very low buckling of the graphene layer, a very homogeneous electron density at the interface, and the lowest known adsorption energy per atom for graphene on any substrate. A structural comparison to other graphenes suggests that hydrogen-intercalated graphene on 6H-SiC(0001) approaches ideal graphene.
Nature Communications | 2014
Benjamin Stadtmüller; Daniel Lüftner; Martin Willenbockel; Eva Maria Reinisch; Tomoki Sueyoshi; Georg Koller; Serguei Soubatch; M.G. Ramsey; Peter Puschnig; F. Stefan Tautz; Christian Kumpf
Although geometric and electronic properties of any physical or chemical system are always mutually coupled by the rules of quantum mechanics, counterintuitive coincidences between the two are sometimes observed. The coadsorption of the organic molecules 3,4,9,10-perylene tetracarboxylic dianhydride and copper-II-phthalocyanine on Ag(111) represents such a case, since geometric and electronic structures appear to be decoupled: one molecule moves away from the substrate while its electronic structure indicates a stronger chemical interaction, and vice versa for the other. Our comprehensive experimental and ab-initio theoretical study reveals that, mediated by the metal surface, both species mutually amplify their charge-donating and -accepting characters, respectively. This resolves the apparent paradox, and demonstrates with exceptional clarity how geometric and electronic bonding parameters are intertwined at metal-organic interfaces.
Journal of Chemical Physics | 2005
Christian Kumpf; R. B. Neder; F. Niederdraenk; P. Luczak; A. Stahl; M. Scheuermann; S. Joshi; Sulabha K. Kulkarni; C. Barglik-Chory; C. Heske; E. Umbach
We introduce a modified method of powder-diffraction data analysis to obtain precise structural information on freestanding ZnS and CdS nanoparticles with diameters well below 5 nm, i.e., in a range where common bulk-derived approaches fail. The method is based on the Debye equation and allows us to access the crystal structure and the size of the particles with high precision. Detailed information on strain, relaxation effects, stacking faults, and the shape of the particles becomes available. We find significant size differences between our new results and those obtained by established methods, and conclude that a mixed zinc-blende/wurtzite stacking and significant lattice distortions occur in our CdS nanoparticles. Our approach should have direct impact on the understanding and modeling of quantum size effects in nanoparticles.
EPL | 2012
Benjamin Stadtmüller; Martin Willenbockel; E. M. Reinisch; Thomas Ules; François C. Bocquet; Serguei Soubatch; Peter Puschnig; Georg Koller; M.G. Ramsey; F. S. Tautz; Christian Kumpf
Orbital tomography is a new and very powerful tool to analyze the angular distribution of a photoemission spectroscopy experiment. It was successfully used for organic adsorbate systems to identify (and consequently deconvolute) the contributions of specific molecular orbitals to the photoemission data. The technique was so far limited to surfaces with low symmetry like fcc(110) oriented surfaces, owing to the small number of rotational domains that occur on such surfaces. In this letter we overcome this limitation and present an orbital tomography study of a 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) monolayer film adsorbed on Ag(111). Although this system exhibits twelve differently oriented molecules, the angular resolved photoemission data still allow a meaningful analysis of the different local density of states and reveal different electronic structures for symmetrically inequivalent molecules. We also discuss the precision of the orbital tomography technique in terms of counting statistics and linear regression fitting algorithm. Our results demonstrate that orbital tomography is not limited to low-symmetry surfaces, a finding which makes a broad field of complex adsorbate systems accessible to this powerful technique.
New Journal of Physics | 2013
Martin Willenbockel; Benjamin Stadtmüller; K. Schönauer; François C. Bocquet; Daniel Lüftner; E. M. Reinisch; Thomas Ules; Georg Koller; Christian Kumpf; Serguei Soubatch; Peter Puschnig; M.G. Ramsey; F. S. Tautz
The compressed 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) herringbone monolayer structure on Ag(110) is used as a model system to investigate the role of molecule–molecule interactions at metal–organic interfaces. By means of the orbital tomography technique, we can not only distinguish the two inequivalent molecules in the unit cell but also resolve their different energy positions for the highest occupied and the lowest unoccupied molecular orbitals. Density functional theory calculations of a freestanding PTCDA layer identify the electrostatic interaction between neighboring molecules, rather than the adsorption site, as the main reason for the molecular level splitting observed experimentally.
Journal of Chemical Physics | 2011
Ingo Kröger; Benjamin Stadtmüller; Christian Wagner; Christian Weiss; Ruslan Temirov; F. Stefan Tautz; Christian Kumpf
The understanding and control of epitaxial growth of organic thin films is of crucial importance in order to optimize the performance of future electronic devices. In particular, the start of the submonolayer growth plays an important role since it often determines the structure of the first layer and subsequently of the entire molecular film. We have investigated the structure formation of 3,4,9,10-perylene-tetracarboxylic dianhydride and copper-phthalocyanine molecules on Au(111) using pair-potential calculations based on van der Waals and electrostatic intermolecular interactions. The results are compared with the fundamental lateral structures known from experiment and an excellent agreement was found for these weakly interacting systems. Furthermore, the calculations are even suitable for chemisorptive adsorption as demonstrated for copper-phthalocyanine/Cu(111), if the influence of charge transfer between substrate and molecules is known and the corresponding charge redistribution in the molecules can be estimated. The calculations are of general applicability for molecular adsorbate systems which are dominated by electrostatic and van der Waals interaction.
New Journal of Physics | 2015
Benjamin Stadtmüller; Caroline Henneke; Serguei Soubatch; F. Stefan Tautz; Christian Kumpf
The physical properties of interfaces between organic semiconductors and metal surfaces crucially influence the performance of organic electronic devices. In order to enable the tailoring of such metal–organic hybrid interfaces we study the adsorption of heteromolecular thin films containing the prototypical molecules copper-II-phthalocyanine (CuPc) and 3,4,9,10-perylene-tetra-carboxylic-dianhydride (PTCDA) on the Ag(111) surface. Here, we demonstrate how the lateral order can be tuned by changing the relative coverage of both adsorbates on the surface. The layer growth has been studied in real time with low energy electron microscopy, and—for different stoichiometries—the geometric properties of three heteromolecular submonolayer phases have been investigated using high resolution low energy electron diffraction and low temperature scanning tunneling microscopy. Furthermore, we have used a theoretical approach based on van der Waals and electrostatic potentials in order to reveal the influence of the intermolecular and the molecule–substrate interactions on the lateral order of heteromolecular films.
Microscopy and Microanalysis | 2014
Thomas Duden; Andreas Thust; Christian Kumpf; Frank Stefan Tautz
In low-energy electron microscopy (LEEM) we commonly encounter images which, beside amplitude contrast, also show signatures of phase contrast. The images are usually interpreted by following the evolution of the contrast during the experiment, and assigning gray levels to morphological changes. Through reconstruction of the exit wave, two aspects of LEEM can be addressed: (1) the resolution can be improved by exploiting the full information limit of the microscope and (2) electron phase shifts which contribute to the image contrast can be extracted. In this article, linear exit wave reconstruction from a through-focal series of LEEM images is demonstrated. As a model system we utilize a heteromolecular monolayer consisting of the organic molecules 3,4,9,10-perylene tetracarboxylic dianhydride and Cu-II-Phthalocyanine, adsorbed on a Ag(111) surface.
Physical Review Letters | 2016
Benjamin Stadtmüller; Johannes Seidel; Norman Haag; Lisa Grad; Christian Tusche; Gerben van Straaten; Markus Franke; J. Kirschner; Christian Kumpf; Mirko Cinchetti; Martin Aeschlimann
Hybridization-related modifications of the first metal layer of a metal-organic interface are difficult to access experimentally and have been largely neglected so far. Here, we study the influence of specific chemical bonds (as formed by the organic molecules CuPc and PTCDA) on a Pb-Ag surface alloy. We find that delocalized van der Waals or weak chemical π-type bonds are not strong enough to alter the alloy, while localized σ-type bonds lead to a vertical displacement of the Pb surface atoms and to changes in the alloys surface band structure. Our results provide an exciting platform for tuning the Rashba-type spin texture of surface alloys using organic molecules.