Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian L. Barrett is active.

Publication


Featured researches published by Christian L. Barrett.


Nature Biotechnology | 2009

The transcription unit architecture of the Escherichia coli genome

Byung-Kwan Cho; Karsten Zengler; Yu Qiu; Young Seoub Park; Eric M. Knight; Christian L. Barrett; Yuan Gao; Bernhard O. Palsson

Bacterial genomes are organized by structural and functional elements, including promoters, transcription start and termination sites, open reading frames, regulatory noncoding regions, untranslated regions and transcription units. Here, we iteratively integrate high-throughput, genome-wide measurements of RNA polymerase binding locations and mRNA transcript abundance, 5′ sequences and translation into proteins to determine the organizational structure of the Escherichia coli K-12 MG1655 genome. Integration of the organizational elements provides an experimentally annotated transcription unit architecture, including alternative transcription start sites, 5′ untranslated region, boundaries and open reading frames of each transcription unit. A total of 4,661 transcription units were identified, representing an increase of >530% over current knowledge. This comprehensive transcription unit architecture allows for the elucidation of condition-specific uses of alternative sigma factors at the genome scale. Furthermore, the transcription unit architecture provides a foundation on which to construct genome-scale transcriptional and translational regulatory networks.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli

Byung-Kwan Cho; Christian L. Barrett; Eric M. Knight; Young Seoub Park; Bernhard O. Palsson

Broad-acting transcription factors (TFs) in bacteria form regulons. Here, we present a 4-step method to fully reconstruct the leucine-responsive protein (Lrp) regulon in Escherichia coli K-12 MG 1655 that regulates nitrogen metabolism. Step 1 is composed of obtaining high-resolution ChIP-chip data for Lrp, the RNA polymerase and expression profiles under multiple environmental conditions. We identified 138 unique and reproducible Lrp-binding regions and classified their binding state under different conditions. In the second step, the analysis of these data revealed 6 distinct regulatory modes for individual ORFs. In the third step, we used the functional assignment of the regulated ORFs to reconstruct 4 types of regulatory network motifs around the metabolites that are affected by the corresponding gene products. In the fourth step, we determined how leucine, as a signaling molecule, shifts the regulatory motifs for particular metabolites. The physiological structure that emerges shows the regulatory motifs for different amino acid fall into the traditional classification of amino acid families, thus elucidating the structure and physiological functions of the Lrp-regulon. The same procedure can be applied to other broad-acting TFs, opening the way to full bottom-up reconstruction of the transcriptional regulatory network in bacterial cells.


Genome Research | 2008

Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts

Byung-Kwan Cho; Eric M. Knight; Christian L. Barrett; Bernhard O. Palsson

We determined the genome-wide distribution of the nucleoid-associated protein Fis in Escherichia coli using chromatin immunoprecipitation coupled with high-resolution whole genome-tiling microarrays. We identified 894 Fis-associated regions across the E. coli genome. A significant number of these binding sites were found within open reading frames (33%) and between divergently transcribed transcripts (5%). Analysis indicates that A-tracts and AT-tracts are an important signal for preferred Fis-binding sites, and that A(6)-tracts in particular constitute a high-affinity signal that dictates Fis phasing in stretches of DNA containing multiple and variably spaced A-tracts and AT-tracts. Furthermore, we find evidence for an average of two Fis-binding regions per supercoiling domain in the chromosome of exponentially growing cells. Transcriptome analysis shows that approximately 21% of genes are affected by the deletion of fis; however, the changes in magnitude are small. To address the differential Fis bindings under growth environment perturbation, ChIP-chip analysis was performed using cells grown under aerobic and anaerobic growth conditions. Interestingly, the Fis-binding regions are almost identical in aerobic and anaerobic growth conditions-indicating that the E. coli genome topology mediated by Fis is superficially identical in the two conditions. These novel results provide new insight into how Fis modulates DNA topology at a genome scale and thus advance our understanding of the architectural bases of the E. coli nucleoid.


Genome Biology | 2009

Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations

Tom M Conrad; Andrew R. Joyce; M. Kenyon Applebee; Christian L. Barrett; Bin Xie; Yuan Gao; Bernhard O. Palsson

BackgroundShort-term laboratory evolution of bacteria followed by genomic sequencing provides insight into the mechanism of adaptive evolution, such as the number of mutations needed for adaptation, genotype-phenotype relationships, and the reproducibility of adaptive outcomes.ResultsIn the present study, we describe the genome sequencing of 11 endpoints of Escherichia coli that underwent 60-day laboratory adaptive evolution under growth rate selection pressure in lactate minimal media. Two to eight mutations were identified per endpoint. Generally, each endpoint acquired mutations to different genes. The most notable exception was an 82 base-pair deletion in the rph-pyrE operon that appeared in 7 of the 11 adapted strains. This mutation conferred an approximately 15% increase to the growth rate when experimentally introduced to the wild-type background and resulted in an approximately 30% increase to growth rate when introduced to a background already harboring two adaptive mutations. Additionally, most endpoints had a mutation in a regulatory gene (crp or relA, for example) or the RNA polymerase.ConclusionsThe 82 base-pair deletion found in the rph-pyrE operon of many endpoints may function to relieve a pyrimidine biosynthesis defect present in MG1655. In contrast, a variety of regulators acquire mutations in the different endpoints, suggesting flexibility in overcoming regulatory challenges in the adaptation.


Cell Stem Cell | 2013

A Pan-BCL2 Inhibitor Renders Bone-Marrow-Resident Human Leukemia Stem Cells Sensitive to Tyrosine Kinase Inhibition

Daniel Goff; Angela Court Recart; Anil Sadarangani; Hye Jung E Chun; Christian L. Barrett; Maryla Krajewska; Heather Leu; Janine Low-Marchelli; Wenxue Ma; Alice Y. Shih; Jun Wei; Dayong Zhai; Ifat Geron; Minya Pu; Lei Bao; Ryan Chuang; Larisa Balaian; Jason Gotlib; Mark D. Minden; Giovanni Martinelli; Jessica Rusert; Kim Hien T Dao; Kamran Shazand; Peggy Wentworth; Kristen M. Smith; Christina Jamieson; Sheldon R. Morris; Karen Messer; Lawrence S.B. Goldstein; Thomas J. Hudson

Leukemia stem cells (LSCs) play a pivotal role in the resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitors (TKIs) and its progression to blast crisis (BC), in part, through the alternative splicing of self-renewal and survival genes. To elucidate splice-isoform regulators of human BC LSC maintenance, we performed whole-transcriptome RNA sequencing, splice-isoform-specific quantitative RT-PCR (qRT-PCR), nanoproteomics, stromal coculture, and BC LSC xenotransplantation analyses. Cumulatively, these studies show that the alternative splicing of multiple prosurvival BCL2 family genes promotes malignant transformation of myeloid progenitors into BC LSCS that are quiescent in the marrow niche and that contribute to therapeutic resistance. Notably, sabutoclax, a pan-BCL2 inhibitor, renders marrow-niche-resident BC LSCs sensitive to TKIs at doses that spare normal progenitors. These findings underscore the importance of alternative BCL2 family splice-isoform expression in BC LSC maintenance and suggest that the combinatorial inhibition of prosurvival BCL2 family proteins and BCR-ABL may eliminate dormant LSCs and obviate resistance.


PLOS Computational Biology | 2015

Transcriptome sequencing reveals potential mechanism of cryptic 3' splice site selection in SF3B1-mutated cancers.

Christopher DeBoever; Emanuela M. Ghia; Peter J. Shepard; Laura Z. Rassenti; Christian L. Barrett; Kristen Jepsen; Catriona Jamieson; Dennis A. Carson; Thomas J. Kipps; Kelly A. Frazer

Mutations in the splicing factor SF3B1 are found in several cancer types and have been associated with various splicing defects. Using transcriptome sequencing data from chronic lymphocytic leukemia, breast cancer and uveal melanoma tumor samples, we show that hundreds of cryptic 3’ splice sites (3’SSs) are used in cancers with SF3B1 mutations. We define the necessary sequence context for the observed cryptic 3’ SSs and propose that cryptic 3’SS selection is a result of SF3B1 mutations causing a shift in the sterically protected region downstream of the branch point. While most cryptic 3’SSs are present at low frequency (<10%) relative to nearby canonical 3’SSs, we identified ten genes that preferred out-of-frame cryptic 3’SSs. We show that cancers with mutations in the SF3B1 HEAT 5-9 repeats use cryptic 3’SSs downstream of the branch point and provide both a mechanistic model consistent with published experimental data and affected targets that will guide further research into the oncogenic effects of SF3B1 mutation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia

Qingfei Jiang; Leslie Crews; Christian L. Barrett; Hye Jung E Chun; Angela C. Court; Jane M. Isquith; Maria Anna Zipeto; Daniel Goff; Mark D. Minden; Anil Sadarangani; Jessica Rusert; Kim Hien T Dao; Sheldon R. Morris; Lawrence S.B. Goldstein; Marco A. Marra; Kelly A. Frazer; Catriona Jamieson

The molecular etiology of human progenitor reprogramming into self-renewing leukemia stem cells (LSC) has remained elusive. Although DNA sequencing has uncovered spliceosome gene mutations that promote alternative splicing and portend leukemic transformation, isoform diversity also may be generated by RNA editing mediated by adenosine deaminase acting on RNA (ADAR) enzymes that regulate stem cell maintenance. In this study, whole-transcriptome sequencing of normal, chronic phase, and serially transplantable blast crisis chronic myeloid leukemia (CML) progenitors revealed increased IFN-γ pathway gene expression in concert with BCR-ABL amplification, enhanced expression of the IFN-responsive ADAR1 p150 isoform, and a propensity for increased adenosine-to-inosine RNA editing during CML progression. Lentiviral overexpression experiments demonstrate that ADAR1 p150 promotes expression of the myeloid transcription factor PU.1 and induces malignant reprogramming of myeloid progenitors. Moreover, enforced ADAR1 p150 expression was associated with production of a misspliced form of GSK3β implicated in LSC self-renewal. Finally, functional serial transplantation and shRNA studies demonstrate that ADAR1 knockdown impaired in vivo self-renewal capacity of blast crisis CML progenitors. Together these data provide a compelling rationale for developing ADAR1-based LSC detection and eradication strategies.


Environmental Microbiology | 2011

A c-type Cytochrome and a Transcriptional Regulator Responsible for Enhanced Extracellular Electron Transfer in Geobacter Sulfurreducens Revealed by Adaptive Evolution

Pier-Luc Tremblay; Zarath M. Summers; Richard H. Glaven; Kelly P. Nevin; Karsten Zengler; Christian L. Barrett; Yu Qiu; Bernhard O. Palsson; Derek R. Lovley

The stimulation of subsurface microbial metabolism often associated with engineered bioremediation of groundwater contaminants presents subsurface microorganisms, which are adapted for slow growth and metabolism in the subsurface, with new selective pressures. In order to better understand how Geobacter species might adapt to selective pressure for faster metal reduction in the subsurface, Geobacter sulfurreducens was put under selective pressure for rapid Fe(III) oxide reduction. The genomes of two resultant strains with rates of Fe(III) oxide reduction that were 10-fold higher than those of the parent strain were resequenced. Both strains contain either a single base-pair change or a 1 nucleotide insertion in a GEMM riboswitch upstream of GSU1761, a gene coding for the periplasmic c-type cytochrome designated PgcA. GSU1771, a gene coding for a SARP regulator, was also mutated in both strains. Introduction of either of the GEMM riboswitch mutations upstream of pgcA in the wild-type increased the abundance of pgcA transcripts, consistent with increased expression of pgcA in the adapted strains. One of the mutations doubled the rate of Fe(III) oxide reduction. Interruption of GSU1771 doubled the Fe(III) oxide reduction rate. This was associated with an increased in expression of pilA, the gene encoding the structural protein for the pili thought to function as microbial nanowires. The combination of the GSU1771 interruption with either of the pgcA mutations resulted in a strain that reduced Fe(III) as fast as the comparable adapted strain. These results suggest that the accumulation of a small number of beneficial mutations under selective pressure, similar to that potentially present during bioremediation, can greatly enhance the capacity for Fe(III) oxide reduction in G. sulfurreducens. Furthermore, the results emphasize the importance of the c-type cytochrome PgcA and pili in Fe(III) oxide reduction and demonstrate how adaptive evolution studies can aid in the elucidation of complex mechanisms, such as extracellular electron transfer.


PLOS ONE | 2011

Cumulative Number of Cell Divisions as a Meaningful Timescale for Adaptive Laboratory Evolution of Escherichia coli

Dae-Hee Lee; Adam M. Feist; Christian L. Barrett; Bernhard O. Palsson

Adaptive laboratory evolution (ALE) under controlled conditions has become a valuable approach for the study of the genetic and biochemical basis for microbial adaptation under a given selection pressure. Conventionally, the timescale in ALE experiments has been set in terms of number of generations. As mutations are believed to occur primarily during cell division in growing cultures, the cumulative number of cell divisions (CCD) would be an alternative way to set the timescale for ALE. Here we show that in short-term ALE (up to 40–50 days), Escherichia coli, under growth rate selection pressure, was found to undergo approximately 1011.2 total cumulative cell divisions in the population to produce a new stable growth phenotype that results from 2 to 8 mutations. Continuous exposure to a low level of the mutagen N-methyl-N′-nitro-N-nitrosoguanidine was found to accelerate this timescale and led to a superior growth rate phenotype with a much larger number of mutations as determined with whole-genome sequencing. These results would be useful for the fundamental kinetics of the ALE process in designing ALE experiments and provide a basis for its quantitative description.


PLOS Computational Biology | 2005

Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.

Christian L. Barrett; Bernhard O. Palsson

The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy) data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments (~1012) that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge.

Collaboration


Dive into the Christian L. Barrett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Goff

University of California

View shared research outputs
Top Co-Authors

Avatar

Qingfei Jiang

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark D. Minden

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Marco A. Marra

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Cayla N. Mason

University of California

View shared research outputs
Top Co-Authors

Avatar

Heather Leu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge