Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Lanconelli is active.

Publication


Featured researches published by Christian Lanconelli.


Tellus B | 2014

Insights on nitrate sources at Dome C (East Antarctic Plateau) from multi-year aerosol and snow records

Rita Traversi; Roberto Udisti; Daniele Frosini; Silvia Becagli; V. Ciardini; B. Funke; Christian Lanconelli; Boyan Petkov; Claudio Scarchilli; Mirko Severi; Vito Vitale

Here we present the first multi-year record of nitrate in the atmospheric aerosol (2005–2008) and surface snow (2006–08) from central Antarctica. PM10 and size-segregated aerosol, together with superficial snow, have been collected all year-round at high resolution (daily for all the snow samples and for most of aerosol samples) at Dome C since the 2004/05 field season and analysed for main and trace ionic markers. The suitability of the sampling location in terms of possible contamination from the base is shown in detail. In spite of the relevance of nitrate in Antarctic atmosphere, both for better understanding the chemistry of N cycle in the plateau boundary layer and for improving the interpretation of long-term nitrate records from deep ice core records, nitrate sources in Antarctica are not well constrained yet, neither in extent nor in timing. A recurring seasonal pattern was pointed out in both aerosol and snow records, showing summer maxima and winter minima, although aerosol maxima lead the snow ones of 1–2 months, possibly due to a higher acidity in the atmosphere in mid-summer, favouring the repartition of nitrate as nitric acid and thus its uptake by the surface snow layers. On the basis of a meteorological analysis of one major nitrate event, of data related to PSC I extent and of irradiance values, we propose that the high nitrate summer levels in aerosol and snow are likely due to a synergy of enhanced source of nitrate and/or its precursors (such as the stratospheric inputs), higher solar irradiance and higher oxidation rates in this season. Moreover, we show here a further evidence of the substantial contribution of HNO3/NOx re-emission from the snowpack, already shown in previous works, and which can explain a significant fraction of atmospheric nitrate, maintaining the same seasonal pattern in the snow. As concerning snow specifically, the presented data suggest that nitrate is likely to be controlled mainly by atmospheric processes, not on the daily timescale but rather on the seasonal one.


Rend. Fis. Acc. Lincei | 2016

Atmospheric observations at the Amundsen-Nobile Climate Change Tower in Ny-Ålesund, Svalbard

Mauro Mazzola; Angelo Viola; Christian Lanconelli; Vito Vitale

The Amundsen-Nobile Climate Change Tower (CCT) is one of the important scientific platforms operating in Ny-Ålesund, Svalbard. The CCT is equipped with a consistent set of meteorological sensors installed at different heights to provide continuous measurements of the atmospheric parameters that affect the climate and its variability. In this paper, some features of the main meteorological parameters observed during the 6 years of measurements since November 2009 are presented in order to describe the thermodynamic characteristic of the lower layers of the atmosphere and the peculiarities of CCT. Monthly and seasonal behavior of temperature, humidity and wind as well as radiation budget and albedo variability are also shown. Such preliminary statistical description aims to provide an overview of the phenomenology occurring in the Kongsfjord area, useful to proceed with further analysis of the arctic climatic system. Even if the time series are not long enough to consider the parameters variability on a climatological time scale, useful assumptions can be made for detailed analysis concerning turbulence studies, data intercomparison at different time and space scales, validation of theory and numerical model results. CCT dataset is stored in a dedicated built-in digital infrastructure that allows other users, in the frame of international cooperations, to visualize, access and download the data and contribute to strengthen the collaboration within the scientific community operating in Svalbard.


Advances in Meteorology | 2015

Vertical Profiles and Chemical Properties of Aerosol Particles upon Ny-Ålesund (Svalbard Islands)

Beatrice Moroni; Silvia Becagli; Ezio Bolzacchini; Maurizio Busetto; David Cappelletti; Stefano Crocchianti; L. Ferrero; Daniele Frosini; Christian Lanconelli; Angelo Lupi; Marion Maturilli; Mauro Mazzola; Maria Grazia Perrone; G Sangiorgi; Rita Traversi; Roberto Udisti; Angelo Viola; Vito Vitale

Size-segregated particle samples were collected in the Arctic (Ny-Alesund, Svalbard) in April 2011 both at ground level and in the free atmosphere exploiting a tethered balloon equipped also with an optical particle counter (OPC) and meteorological sensors. Individual particle properties were investigated by scanning electron microscopy coupled with energy dispersive microanalysis (SEM-EDS). Results of the SEM-EDS were integrated with particle size and optical measurements of the aerosols properties at ground level and along the vertical profiles. Detailed analysis of two case studies reveals significant differences in composition despite the similar structure (layering) and the comparable texture (grain size distribution) of particles in the air column. Differences in the mineral chemistry of samples point at both local (plutonic/metamorphic complexes in Svalbard) and remote (basic/ultrabasic magmatic complexes in Greenland and/or Iceland) geological source regions for dust. Differences in the particle size and shape are put into relationship with the mechanism of particle formation, that is, primary (well sorted, small) or secondary (idiomorphic, fine to coarse grained) origin for chloride and sulfate crystals and transport/settling for soil (silicate, carbonate and metal oxide) particles. The influence of size, shape, and mixing state of particles on ice nucleation and radiative properties is also discussed.


Antarctic Science | 2011

Variations of UV irradiance at Antarctic station Concordia during the springs of 2008 and 2009

Vito Vitale; Boyan Petkov; Florence Goutail; Christian Lanconelli; Angelo Lupi; Mauro Mazzola; Maurizio Busetto; Andrea Pazmino; Riccardo Schioppo; L. Genoni; Claudio Tomasi

Abstract The features of solar UV irradiance measured at the Italian-French Antarctic Plateau station, Concordia, during the springs of 2008 and 2009 are presented and discussed. In order to study the impact of the large springtime variations in total ozone column on the fraction of ultraviolet B (UV-B) irradiance (from c. 290–315 nm) reaching the Earth surface, irradiance datasets corresponding to fixed solar zenith angles (SZAs = 65°, 75° and 85°) are correlated to the daily ozone column provided by different instruments. For these SZAs the radiation amplification factor varied from 1.58–1.94 at 306 nm and from 0.68–0.88 at 314 nm. The ultraviolet index reached a maximum level of 8 in the summer, corresponding to the typical average summer value for mid latitude sites. The solar irradiance pertaining to the ultraviolet A (UV-A, 315–400 nm) spectral band was found to depend closely on variations of atmospheric transmittance characteristics as reported by previous studies. Model simulations of UV-B irradiance showed a good agreement with field measurements at 65° and 75° SZAs. For SZA = 85° the ozone vertical distribution significantly impacted model estimations. Sensitivity analysis performed by hypothetically varying the ozone distribution revealed some features of the ozone profiles that occurred in the period studied here.


Tellus B | 2011

Five-year analysis of background carbon dioxide and ozone variations during summer seasons at the Mario Zucchelli station (Antarctica)

Paolo Cristofanelli; F. Calzolari; U. Bonafè; Christian Lanconelli; Angelo Lupi; Maurizio Busetto; Vito Vitale; T. Colombo; Paolo Bonasoni

Thework focuses on the analysis ofCO2 andO3 surface variations observed during five summer experimental campaigns carried out at the ‘Icaro Camp’ clean air facility (74.7◦S, 164.1◦E, 41 m a.s.l.) of the ‘Mario Zucchelli’ Italian coastal research station. This experimental activity allowed the definition of summer average background O3 values that ranged from 18.3 ± 4.7 ppbv (summer 2005–2006) to 21.3 ± 4.0 ppbv (summer 2003–2004). Background CO2 concentrations showed an average growth rate of 2.10 ppmv yr-1, with the highest CO2 increase between the summer campaigns 2002–2003 and 2001–2002 (+2.85 ppmv yr-1), probably reflecting the influence of the 2002/2003 ENSO event. A comparison with other Antarctic coastal sites suggested that the summer background CO2 and O3 at MZS-IC are well representative of the average conditions of the Ross Sea coastal regions. As shown by the analysis of local wind direction and by 3-D back-trajectory calculations, the highest CO2 and O3 values were recorded in correspondence to air masses flowing from the interior of the Antarctic continent. These results suggest that air mass transport from the interior of the continent exerts an important influence on air mass composition in Antarctic coastal areas.


Archive | 2015

Diurnally averaged direct aerosol-induced radiative forcing from cloud-free sky field measurements performed during seven regional experiments

Claudio Tomasi; Christian Lanconelli; Angelo Lupi; Mauro Mazzola

Aerosol particles suspended in the atmosphere may originate from either natural or anthropic sources, or through mixed processes involving their variable combinations. Among the primary natural emissions, the most important are those leading to the formation of (i) mineral dust through wind erosion of natural soil and (ii) sea-salt particles from the ocean surface forced by winds. In addition, significant emission processes include biological particles released by plants and animals, combustion particles forming in forest fires and biomass-burning smokes, and volcanic debris ejections.


Archive | 2013

Dependence of direct aerosol radiative forcing on the optical properties of atmospheric aerosol and underlying surface

Claudio Tomasi; Christian Lanconelli; Angelo Lupi; Mauro Mazzola

Airborne aerosol is a suspension of solid particulate matter and/or liquid particles in air, which are often observed as dust, haze and smoke. They present an overall number concentration usually varying between a few hundred per cubic centimeter of air in the remote areas of the planet and more than 104 cm-3 in the most polluted urban areas, with sizes ranging mainly between 0.01 and no more than 100 μm, and therefore varying by more than four orders of magnitude (Heintzenberg, 1994). Aerosol particles are present in the atmosphere as a result of primary emissions or are formed through secondary processes involving both natural and anthropogenic gaseous species.


Antarctic Science | 2013

Parameterization of clear sky effective emissivity under surface-based temperature inversion at Dome C and South Pole, Antarctica

Maurizio Busetto; Christian Lanconelli; Mauro Mazzola; Angelo Lupi; Boyan Petkov; Vito Vitale; Claudio Tomasi; Paolo Grigioni; Andrea Pellegrini

Abstract For most parts of the year the Antarctic Plateau has a surface temperature inversion with strength c. 20 K. Under such conditions the warmer air at the top of the inversion layer contributes more to the clear sky atmospheric longwave radiation at surface level than does the colder air near the ground. Hence, it is more appropriate to relate longwave irradiance (LWI) to the top of the inversion layer temperature (Tm) than to the ground level temperature (Tg). Analysis of radio soundings carried out at Dome C and South Pole during 2006–08 shows that the temperature at 400 m above the surface (T400) is a good proxy for Tm and is linearly related to Tg with correlation coefficients greater than 0.8. During summer, radiosonde measurements show almost isothermal conditions, hence T400 still remains a good proxy for the lower troposphere maximum temperature. A methodology is presented to parameterize the clear sky effective emissivity in terms of the troposphere maximum temperature, using ground temperature measurements. The predicted LWI values for both sites are comparable with those obtained using radiative transfer models, while for Dome C the bias of 0.8 W m-2 and the root mean square (RMS) of 6.2 W m-2 are lower than those calculated with previously published parametric equations.


Antarctic Science | 2008

Analysis of near-surface ozone variations in Terra Nova Bay, Antarctica

P. Cristofanelli; P. Bonasoni; F. Calzolari; U. Bonafe; Christian Lanconelli; Angelo Lupi; G. Trivellone; Vito Vitale; Boyan Petkov

Abstract Ozone concentration measurements were made during December from 2001–2005 to quantify the contributions of different processes to near-surface ozone concentrations (O3) in Terra Nova Bay, Antarctica. The average O3 concentration was 20.3 ppbv. On days characterized by high solar radiation fluxes (HSR), significantly higher concentrations of O3 (21.3 ppbv) were recorded compared to days with low solar radiation fluxes (LSR days, 16.8 ppbv). High O3 concentrations could be related to strong winds from SW–NW. Three-dimensional back-trajectories show that air from the interior of the continent could affect O3 at Terra Nova Bay. Moreover, during HSR days, high O3 concentrations were also recorded in connection with weak circulation, suggesting that emissions from the Italian base (located 2 km north) could also represent a significant source of O3. To clarify the role of local pollution in Terra Nova Bay, O3 values were also calculated using the photochemical steady state (PSS) approximation under clear sky and cloudy conditions.


Atmospheric Chemistry and Physics | 2017

Features in air ions measured by an air ion spectrometer (AIS) at Dome C

Xuemeng Chen; Aki Virkkula; Veli-Matti Kerminen; H. E. Manninen; Maurizio Busetto; Christian Lanconelli; Angelo Lupi; Vito Vitale; Massimo Del Guasta; Paolo Grigioni; Riikka Väänänen; Ella-Maria Duplissy; Tuukka Petäjä; Markku Kulmala

An air ion spectrometer (AIS) was deployed for the first time at the Concordia station at Dome C (7506 S, 12323 E; 3220 m a.s.l.), Antarctica during the period 22 December 2010–16 November 2011 for measuring the number size distribution of air ions. In this work, we present results obtained from this air ion data set together with aerosol particle and meteorological data. The main processes that modify the number size distribution of air ions during the measurement period at this high-altitude site included new particle formation (NPF, observed on 85 days), wind-induced ion formation (observed on 36 days), and ion production and loss associated with cloud/fog formation (observed on 2 days). For the subset of days when none of these processes seemed to operate, the concentrations of cluster ions (0.9–1.9 nm) exhibited a clear seasonality, with high concentrations in the warm months and low concentrations in the cold. Compared to event-free days, days with NPF were observed with higher cluster ion concentrations. A number of NPF events were observed with restricted growth below 10 nm, which were termed as suppressed NPF. There was another distinct feature, namely a simultaneous presence of two or three separate NPF and subsequent growth events, which were named as multi-mode NPF events. Growth rates (GRs) were determined using two methods: the appearance time method and the mode fitting method. The former method seemed to have advantages in characterizing NPF events with a fast GR, whereas the latter method is more suitable when the GR was slow. The formation rate of 2 nm positive ions (J 2 ) was calculated for all the NPF events for which a GR in the 2–3 nm size range could be determined. On average, J 2 was about 0.014 cm −3 s−1. The ion production in relation to cloud/fog formation in the size range of 8–42 nm seemed to be a unique feature at Dome C, which has not been reported elsewhere. These ions may, however, either be multiply charged particles but detected as singly charged in the AIS, or be produced inside the instrument, due to the breakage of cloud condensation nuclei (CCN), possibly related to the instrumental behaviour under the extremely cold condition. For the wind-induced ion formation, our observations suggest that the ions originated more likely from atmospheric nucleation of vapours released from the snow than from mechanical charging of shattered snow flakes and ice crystals.

Collaboration


Dive into the Christian Lanconelli's collaboration.

Top Co-Authors

Avatar

Vito Vitale

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Angelo Lupi

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mauro Mazzola

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudio Tomasi

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Boyan Petkov

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Angelo Viola

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge