Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Lavialle is active.

Publication


Featured researches published by Christian Lavialle.


Philosophical Transactions of the Royal Society B | 2013

Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation

Christian Lavialle; Guillaume Cornelis; Anne Dupressoir; Cécile Esnault; Odile Heidmann; Cécile Vernochet; Thierry Heidmann

The development of the emerging field of ‘paleovirology’ allows biologists to reconstruct the evolutionary history of fossil endogenous retroviral sequences integrated within the genome of living organisms and has led to the retrieval of conserved, ancient retroviral genes ‘exapted’ by ancestral hosts to fulfil essential physiological roles, syncytin genes being undoubtedly among the most remarkable examples of such a phenomenon. Indeed, syncytins are ‘new’ genes encoding proteins derived from the envelope protein of endogenous retroviral elements that have been captured and domesticated on multiple occasions and independently in diverse mammalian species, through a process of convergent evolution. Knockout of syncytin genes in mice provided evidence for their absolute requirement for placenta development and embryo survival, via formation by cell–cell fusion of syncytial cell layers at the fetal–maternal interface. These genes of exogenous origin, acquired ‘by chance’ and yet still ‘necessary’ to carry out a basic function in placental mammals, may have been pivotal in the emergence of mammalian ancestors with a placenta from egg-laying animals via the capture of a founding retroviral env gene, subsequently replaced in the diverse mammalian lineages by new env-derived syncytin genes, each providing its host with a positive selective advantage.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2

Cécile Esnault; Stéphane Priet; David Ribet; Cécile Vernochet; Thomas Brüls; Christian Lavialle; Jean Weissenbach; Thierry Heidmann

Syncytin-2 is an envelope gene from the human endogenous retrovirus FRD (HERV-FRD) co-opted by an ancestral primate host, conserved in evolution over >40 Myr, specifically expressed in the placenta, and with a cell–cell fusogenic activity likely contributing to placenta morphogenesis. Here, using the GeneBridge4 human/Chinese hamster radiation hybrid panel, we mapped and identified the human receptor for syncytin-2. This receptor—namely Major Facilitator Superfamily Domain Containing 2 (MFSD2)—belongs to a large family of presumptive carbohydrate transporters with 10–12 membrane-spanning domains, is located at chromosomal position 1p34.2, and is conserved in evolution. An expression vector for MFSD2 confers fusogenicity to otherwise insusceptible cells upon trans-fection of syncytin-2. It also confers infectivity to syncytin-2 pseudotypes, consistent with this protein being the receptor for the ancestrally acquired HERV-FRD family of endogenous retroviruses. At variance with the human gene, neither mouse nor rat MFSD2 can mediate membrane fusion, which is consistent with the fact that the envelope-derived syncytin genes co-opted by rodents during evolution are not orthologous to the human syncytin genes. Remarkably, a real-time quantitative RT-PCR analysis of MFSD2 in various human tissues demonstrates specific expression in the placenta, as well as in the human BeWo choriocarcinoma cell line, which discloses enhancement of receptor expression upon induction by forskolin of cell–cell fusion and syncytium formation. In situ hybridization of human placental tissue using an MFSD2-specific probe further unambiguously demonstrates receptor expression at the level of the syncytiotrophoblast, again consistent with a role in placenta morphogenesis.


Oncogene | 1999

Apoptosis-prone phenotype of human colon carcinoma cells with a high level amplification of the c- myc gene

Maddalena Donzelli; Rosa Bernardi; Claudia Negri; Ennio Prosperi; Laura Padovan; Christian Lavialle; Olivier Brison; A.Ivana Scovassi

Although apoptosis can be induced by the enforced expression of exogenously introduced c-myc genes, it is not clear whether overexpression resulting from the amplification of the resident c-myc gene in tumor cells is sufficient to induce apoptosis. We have investigated the relationship between c-myc gene amplification and the propensity of tumor cells to undergo apoptosis, using the SW613-12A1 and SW613-B3 cell lines, which are representatives, respectively, of tumorigenic and non-tumorigenic clones isolated from the SW613-S human colon carcinoma cell line. Tumorigenic clones are characterized by a high level of amplification and expression of the c-myc gene, whereas cells of non-tumorigenic clones have a small number of copies and a lower level of expression of this gene. Analysis of c-myc mRNA level in cells cultured under low serum conditions indicated that the expression of the gene is tightly regulated by serum growth factors in non-tumorigenic B3 cells, whereas it is poorly regulated in tumorigenic 12A1 cells, the level of mRNAs remaining relatively high in serum-starved 12A1 cells. Under these conditions, 12A1 cells showed clear evidence of apoptosis, whereas B3 cells were completely refractory to the induction of apoptosis. Moreover, the study of cell lines derived from non-tumorigenic apoptosis-resistant clones following the introduction by transfection of exogenous c-myc gene copies showed that they have acquired an apoptosis-prone phenotype. Altogether, our results strongly suggest that deregulated c-myc expression due to high-level amplification confers an apoptosis-prone phenotype to tumor cells. The possible consequences of these observations for cancer therapy are discussed.


Cancer Genetics and Cytogenetics | 2001

Patterns of specific genomic alterations associated with poor prognosis in high-grade renal cell carcinomas.

Liubov Glukhova; Eric Angevin; Christian Lavialle; Bruno Cadot; Marie-José Terrier-Lacombe; Bernard Perbal; Alain Bernheim; Anne-Françoise Goguel

A series of 13 sporadic renal cell carcinomas was analyzed for the specific chromosome rearrangements after serial xenografting into immunodeficient mice. Seven tumors displayed genetic traits of the conventional subtype and 5 showed genetic features of the papillary subtype. In all the xenografted conventional tumors, we observed loss of 3p, as well as loss of the 9p21 region and of the long arm of chromosome 14, both considered as markers of a poor prognosis. In the xenografted papillary tumors, a duplication of chromosome arm 8q was observed concomitant with the duplication of the 7q31 region. The association of the 7q31 and 8q22 approximately qter duplicated regions was also observed for one conventional tumor. The latency of tumor take was found to be reduced and the median time to passage statistically shorter for all tumors which presented the associated duplication of the 7q31 and 8q22 approximately qter regions. The proto-oncogene NOV (nephroblastoma overexpressed gene) maps to 8q24.1 and is overexpressed in some Wilms tumors. It could be an interesting candidate gene, since its level of expression and release in the culture medium was found to be increased in all of the fast growing tumors analyzed.


Experimental Cell Research | 1992

Increased expression of cytokeratin and ferritin-H genes in tumorigenic clones of the SW 613-S human colon carcinoma cell line☆

Nazanine Modjtahedi; Thierry Frebourg; Nicole Fossar; Christian Lavialle; Chantal Cremisi; Olivier Brison

Subclones of the SW 613-S human colon carcinoma cell line differ by their ability to induce tumors in nude mice and by their level of amplification of the c-myc gene. Clones with a high level of amplification are tumorigenic in nude mice whereas those with a low level are not. Genes overexpressed in the tumorigenic clones as compared to the nontumorigenic ones were searched by differential screening of a cDNA library. Two cDNA clones corresponding to cytokeratin K18 and ferritin-H chain were isolated. The steady state level of the corresponding mRNAs is higher in cells of all tumorigenic clones. The level of cytokeratin K8 mRNA, the specific partner of cytokeratin K18 in intermediate filaments of epithelial cells, is also elevated in these cells. For all three genes, this is mainly due to an increase in the transcription rate, as shown by a nuclear run-on assay. Immunoblotting experiments showed that cytokeratins K8, K18, and K19 are more abundant in cells of tumorigenic clones. The mRNA of the other subunit of apo-ferritin (ferritin-L chain) is expressed at the same level in both types of clones. The mRNAs of cytokeratins K18 and K8 and of ferritin-H chain are also overexpressed in cells of nontumorigenic clones which have acquired a tumorigenic phenotype after transfection of c-myc gene copies.


Oncogene | 2000

Mapping of the 7q31 subregion common to the small chromosome 7 derivatives from two sporadic papillary renal cell carcinomas: increased copy number and overexpression of the MET proto-oncogene

Liubov Glukhova; Christian Lavialle; Didier Fauvet; Ilse Chudoba; Gisèle Danglot; Eric Angevin; Alain Bernheim; Anne-Françoise Goguel

Molecular cytogenetic analysis of several sporadic papillary renal cell carcinomas and of their xenografts in immunodeficient mice had previously allowed us to delimit a minimal overrepresented region of chromosome 7 shared by all of them to band 7q31. We have refined the location of the overlapping region to the junction of the subbands 7q31.2 and 7q31.3 by reverse painting with two differently labelled probes prepared from the small chromosome 7 derivatives microdissected from the cells of two distinct tumours. This small region was shown to contain the MET proto-oncogene, present at three to four copies per cell as determined by Southern blot analysis. The increased copy number of the MET gene was found to be associated with its overexpression at the mRNA level. However, no change in MET copy number or expression level was observed in the cells from two xenografted tumours serially transplanted into immunodeficient mice, as compared to those from the corresponding initial tumours. Our results indicate that expression of the MET proto-oncogene above a critical threshold is required for the maintenance of the tumorigenic phenotype of at least some papillary renal cell carcinomas, but does not further increase during tumour progression.


Molecular and Cellular Biology | 1995

An Sp1 binding site and the minimal promoter contribute to overexpression of the cytokeratin 18 gene in tumorigenic clones relative to that in nontumorigenic clones of a human carcinoma cell line.

Magali Gunther; Thierry Frebourg; Madeleine Laithier; Nicole Fossar; M Bouziane-Ouartini; Christian Lavialle; Olivier Brison

Clones of cells tumorigenic or nontumorigenic in nude mice have been previously isolated from the SW613-S human colon carcinoma cell line. We have already reported that tumorigenic cells overexpress the cytokeratin 18 (K18) gene in comparison with nontumorigenic cells and that this difference is mainly due to a transcriptional regulation. We now report that a 2,532-bp cloned human K18 gene promoter drives the differential expression of a reporter gene in a transient assay. A 62-bp minimal K18 promoter (TATA box and initiation site) has a low but differential activity. Analysis of deletion and substitution mutants as well as hybrid SV40-K18 promoters and reconstructed K18 promoters indicated that an important element for the activity of the K18 promoter is a high-affinity binding site for transcription factor Sp1 located just upstream of the TATA box. This Sp1 binding element, as well as the intron 1 enhancer element, stimulates the basal activity of the minimal promoter through mechanisms that maintain the differential activity. Gel shift assays and the use of an anti-Sp1 antibody have shown that both tumorigenic and nontumorigenic SW613-S cells contain three factors able to bind to the Sp1 binding element site and that one of them is Sp1. A hybrid GAL4-Sp1 protein transactivated to comparable extents in tumorigenic and nontumorigenic cells a reconstructed K18 promoter containing GAL4 binding sites and therefore without altering its differential behavior. These results indicate that the Sp1 transcription factor is involved in the overexpression of the K18 gene in tumorigenic SW613-S cells through its interaction with a component of the basal transcription machinery.


Journal of Biological Chemistry | 2000

Regulation of FGF-3 Gene Expression in Tumorigenic and Non-tumorigenic Clones of a Human Colon Carcinoma Cell Line

Catherine Galdemard; Hidehisa Yamagata; Olivier Brison; Christian Lavialle

The FGF-3 gene is constitutively expressed in tumorigenic clones from the SW613-S human colon carcinoma cell line but is silent in non-tumorigenic clones. We have investigated the transcriptional mechanisms responsible for this differential expression. Mapping of DNase I-hypersensitive sites throughout theFGF-3 gene and the region extending 15 kilobases upstream disclosed differences in the patterns obtained between tumorigenic and non-tumorigenic cells. Transient expression assays carried out with a reporter gene driven by FGF-3 promoter fragments of various lengths (0.143 to 11 kilobases) did not reproduce the differential regulation of the resident gene between the two cell types. The same constructs did exhibit a differential activity in stable transfectants, suggesting the involvement of a chromatin-based mechanism in this regulation. Under these conditions, even the 143-base pair minimal promoter fragment was able to drive the differential expression of the reporter gene. During the course of these analyses, several transcriptional modulatory elements (mainly activators) were identified in the FGF-3 upstream region and were found to colocalize with DNase I-hypersensitive sites. Moreover, a putative new promoter was discovered 6 kilobases upstream of FGF-3. Altogether, these data provide a basis for the elucidation of the complex regulation of the human FGF-3 gene.


Placenta | 2012

From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation.

Anne Dupressoir; Christian Lavialle; Thierry Heidmann


Cancer Research | 1985

Increased level of amplification of the c-myc oncogene in tumors induced in nude mice by a human breast carcinoma cell line

Nazanine Modjtahedi; Christian Lavialle; Marie-France Poupon; Rosa-Maria Landin; Roland Cassingena; Roger Monier; Olivier Brison

Collaboration


Dive into the Christian Lavialle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Lamonerie

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Angevin

Institut Gustave Roussy

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge