Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Leborgne is active.

Publication


Featured researches published by Christian Leborgne.


Human Gene Therapy | 2010

Prevalence of Serum IgG and Neutralizing Factors Against Adeno-Associated Virus (AAV) Types 1, 2, 5, 6, 8, and 9 in the Healthy Population: Implications for Gene Therapy Using AAV Vectors

Sylvie Boutin; Virginie Monteilhet; Philippe Veron; Christian Leborgne; Olivier Benveniste; Marie Montus; Carole Masurier

Adeno-associated viruses (AAVs) are small, nonenveloped single-stranded DNA viruses that require helper viruses to facilitate efficient replication. Despite the presence of humoral responses to the wild-type AAV in humans, AAV remains one of the most promising candidates for therapeutic gene transfer to treat many genetic and acquired diseases. Characterization of the IgG subclass responses to AAV and study of the prevalence of both IgG and neutralizing factors to AAV types 1, 2, 5, 6, 8, and 9 in the human population are of importance for the development of new strategies to overcome these immune responses. Natural exposure to AAV types 1, 2, 5, 6, 8, and 9 can result in the production of antibodies from all four IgG subclasses, with a predominant IgG1 response and low IgG2, IgG3, and IgG4 responses. Prevalences of anti-AAV1 and -AAV2 total IgG determined by enzyme-linked immunosorbent assay were higher (67 and 72%) than those of anti-AAV5 (40%), anti-AAV6 (46%), anti-AAV8 (38%), and anti-AAV9 (47%). Furthermore, data showed that cross-reactions are important. The two highest neutralizing factor seroprevalences were observed for AAV2 (59%) and AAV1 (50.5%) and the lowest were observed for AAV8 (19%) and AAV5 (3.2%). Vectors based on AAV5, AAV8, and AAV9 may have an advantage for gene therapy in humans. Furthermore, among individuals seropositive for AAV5, AAV8, and AAV9, about 70-100% present low titers. Better characterization of the preexisting humoral responses to the AAV capsid and cross-reactivity will allow development of new strategies to circumvent AAV acquired immune responses.


Molecular Therapy | 2014

Forelimb Treatment in a Large Cohort of Dystrophic Dogs Supports Delivery of a Recombinant AAV for Exon Skipping in Duchenne Patients

Caroline Le Guiner; Marie Montus; L. Servais; Yan Cherel; Virginie François; J.L. Thibaud; Claire Wary; B. Matot; Thibaut Larcher; Lydie Guigand; Maeva Dutilleul; Claire Domenger; Marine Allais; Maud Beuvin; A. Moraux; Johanne Le Duff; Marie Devaux; Nicolas Jaulin; Mickaël Guilbaud; Virginie Latournerie; Philippe Veron; Sylvie Boutin; Christian Leborgne; Diana Desgue; Jack-Yves Deschamps; Sophie Moullec; Yves Fromes; Adeline Vulin; Richard J.H. Smith; Nicolas Laroudie

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by mutations in the dystrophin gene, without curative treatment yet available. Our study provides, for the first time, the overall safety profile and therapeutic dose of a recombinant adeno-associated virus vector, serotype 8 (rAAV8) carrying a modified U7snRNA sequence promoting exon skipping to restore a functional in-frame dystrophin transcript, and injected by locoregional transvenous perfusion of the forelimb. Eighteen Golden Retriever Muscular Dystrophy (GRMD) dogs were exposed to increasing doses of GMP-manufactured vector. Treatment was well tolerated in all, and no acute nor delayed adverse effect, including systemic and immune toxicity was detected. There was a dose relationship for the amount of exon skipping with up to 80% of myofibers expressing dystrophin at the highest dose. Similarly, histological, nuclear magnetic resonance pathological indices and strength improvement responded in a dose-dependent manner. The systematic comparison of effects using different independent methods, allowed to define a minimum threshold of dystrophin expressing fibers (>33% for structural measures and >40% for strength) under which there was no clear-cut therapeutic effect. Altogether, these results support the concept of a phase 1/2 trial of locoregional delivery into upper limbs of nonambulatory DMD patients.


Molecular Therapy | 2011

A 10 patient case report on the impact of plasmapheresis upon neutralizing factors against adeno-associated virus (AAV) types 1, 2, 6, and 8.

Virginie Monteilhet; Samir Saheb; Sylvie Boutin; Christian Leborgne; Philippe Veron; Marie-Françoise Montus; Philippe Moullier; Olivier Benveniste; Carole Masurier

Adeno-associated viruses (AAV) are small, nonenveloped single-stranded DNA viruses which require helper viruses to facilitate efficient replication. These recombinant viruses are some of the most promising candidates for therapeutic gene transfer to treat many genetic and acquired diseases. Nevertheless, the presence of humoral responses to the wild-type AAV common among humans is one of the limitations of in vivo transduction efficacy in humans using cognate recombinant vector. In this study, based on the serum samples that we were able to collect from various clinical situations, we studied the impact of one to five plasmapheresis (PP), at 1-5 day intervals on neutralizing factor (NAF) titers specific for AAV types 1, 2, 6, and 8 in seropositive patients with diverse pathologies and immunosuppressor treatments. We show that frequent sessions of PP result in drastic reduction of NAF specific for AAV1, 2, 6, and 8 to undetectable levels or titers <1:5, mainly when initial titers, i.e., before the first PP were ≤1:20. Altogether, these results show that the use of PP and its possible association with pharmacological immunosuppressive treatments may help to design optimal management of seropositive patients for AAV gene therapy treatments.


Journal of Immunology | 2012

Humoral and Cellular Capsid-Specific Immune Responses to Adeno-Associated Virus Type 1 in Randomized Healthy Donors

Philippe Veron; Christian Leborgne; Virginie Monteilhet; Sylvie Boutin; Samia Martin; Philippe Moullier; Carole Masurier

A major impediment to the use of adeno-associated virus (AAV)-mediated gene delivery to muscle in clinical applications is the pre-existing immune responses against the vector. Pre-existing humoral response to different AAV serotypes is now well documented. In contrast, cellular responses to AAV capsid have not been analyzed in a systematic manner, despite the risk of T cell reactivation upon gene transfer. AAV1 has been widely used in humans to target muscle. In this study, we analyzed PBMCs and sera of healthy donors for the presence of AAV1 capsid-specific T cell responses and AAV1 neutralizing factors. Approximately 30% of donors presented AAV1 capsid-specific T cells, mainly effector memory CD8+ cells. IFN-γ–producing cells were also observed among effector memory CD4+ cells for two of these donors. Moreover, to our knowledge, this study shows for the first time on a large cohort that there was no correlation between AAV1-specific T cell and humoral responses. Indeed, most donors presenting specific Ig and neutralizing factors were negative for cellular response (and vice versa). These new data raise the question of prescreening patients not only for the humoral response, but also for the cellular response. Clearly, a better understanding of the natural immunology of AAV serotypes will allow us to improve AAV gene therapy and make it an efficient treatment for genetic disease.


Human Molecular Genetics | 2015

Biochemical, Histological and Functional Correction of Mucopolysaccharidosis Type IIIB by Intra-cerebrospinal Fluid Gene Therapy

Albert Ribera; Virginia Haurigot; Miguel Angel López García; Sara Marcó; Sandra Motas; Pilar Villacampa; Luca Maggioni; Xavier León; Maria Molas; Victor Sanchez; Sergio Muñoz; Christian Leborgne; Xavier Moll; M. Pumarola; Federico Mingozzi; Jesús Ruberte; S. Añor; Fatima Bosch

Gene therapy is an attractive tool for the treatment of monogenic disorders, in particular for lysosomal storage diseases (LSD) caused by deficiencies in secretable lysosomal enzymes in which neither full restoration of normal enzymatic activity nor transduction of all affected cells are necessary. However, some LSD such as Mucopolysaccharidosis Type IIIB (MPSIIIB) are challenging because the diseases main target organ is the brain and enzymes do not efficiently cross the blood-brain barrier even if present at very high concentration in circulation. To overcome these limitations, we delivered AAV9 vectors encoding for α-N-acetylglucosaminidase (NAGLU) to the Cerebrospinal Fluid (CSF) of MPSIIIB mice with the disease already detectable at biochemical, histological and functional level. Restoration of enzymatic activity in Central Nervous System (CNS) resulted in normalization of glycosaminoglycan content and lysosomal physiology, resolved neuroinflammation and restored the pattern of gene expression in brain similar to that of healthy animals. Additionally, transduction of the liver due to passage of vectors to the circulation led to whole-body disease correction. Treated animals also showed reversal of behavioural deficits and extended lifespan. Importantly, when the levels of enzymatic activity were monitored in the CSF of dogs following administration of canine NAGLU-coding vectors to animals that were either naïve or had pre-existing immunity against AAV9, similar levels of activity were achieved, suggesting that CNS efficacy would not be compromised in patients seropositive for AAV9. Our studies provide a strong rationale for the clinical development of this novel therapeutic approach as the treatment for MPSIIIB.


Human Gene Therapy Methods | 2015

Determination of anti-adeno-associated virus vector neutralizing antibody titer with an in vitro reporter system.

Amine Meliani; Christian Leborgne; Sabrina Triffault; Laurence Jeanson-Leh; Philippe Veron; Federico Mingozzi

Abstract Adeno-associated virus (AAV) vectors are a platform of choice for in vivo gene transfer applications. However, neutralizing antibodies (NAb) to AAV can be found in humans and some animal species as a result of exposure to the wild-type virus, and high-titer NAb develop following AAV vector administration. In some conditions, anti-AAV NAb can block transduction with AAV vectors even when present at low titers, thus requiring prescreening before vector administration. Here we describe an improved in vitro, cell-based assay for the determination of NAb titer in serum or plasma samples. The assay is easy to setup and sensitive and, depending on the purpose, can be validated to support clinical development of gene therapy products based on AAV vectors.


Molecular therapy. Methods & clinical development | 2017

Low-dose liver targeted gene therapy for Pompe disease enhances therapeutic efficacy of ERT via immune tolerance induction

Sang-oh Han; Giuseppe Ronzitti; Benjamin Arnson; Christian Leborgne; Songtao Li; Federico Mingozzi; Dwight D. Koeberl

Pompe disease results from acid α-glucosidase (GAA) deficiency, and enzyme replacement therapy (ERT) with recombinant human (rh) GAA has clinical benefits, although its limitations include the short half-life of GAA and the formation of antibody responses. The present study compared the efficacy of ERT against gene transfer with an adeno-associated viral (AAV) vector containing a liver-specific promoter. GAA knockout (KO) mice were administered either a weekly injection of rhGAA (20 mg/kg) or a single injection of AAV2/8-LSPhGAA (8 × 1011 vector genomes [vg]/kg). Both treatments significantly reduced glycogen content of the heart and diaphragm. Although ERT triggered anti-GAA antibody formation, there was no detectable antibody response following AAV vector administration. The efficacy of three lower dosages of AAV2/8-LSPhGAA was evaluated in GAA-KO mice, either alone or in combination with ERT. The minimum effective dose (MED) identified was 8 × 1010 vg/kg to reduce glycogen content in the heart and diaphragm of GAA-KO mice. A 3-fold higher dose was required to suppress antibody responses to ERT. Efficacy from liver gene therapy was slightly greater in male mice than in female mice. Vector dose correlated inversely with anti-GAA antibody formation, whereas higher vector doses suppressed previously formed anti-GAA antibodies as late as 25 weeks after the start of ERT and achieved biochemical correction of glycogen accumulation. In conclusion, we identified the MED for effective AAV2/8-LSPhGAA-mediated tolerogenic gene therapy in Pompe disease mice.


Blood Advances | 2017

Enhanced liver gene transfer and evasion of preexisting humoral immunity with exosome-enveloped AAV vectors

Amine Meliani; Florence Boisgerault; Zachary Fitzpatrick; Solenne Marmier; Christian Leborgne; Fanny Collaud; Marcelo Simon Sola; Severine Charles; Giuseppe Ronzitti; Alban Vignaud; Laetitia van Wittenberghe; Béatrice Marolleau; Fabienne Jouen; S. M. Tan; Olivier Boyer; Olivier D. Christophe; Alain Brisson; Casey A. Maguire; Federico Mingozzi

Results from clinical trials of liver gene transfer for hemophilia demonstrate the potential of the adeno-associated virus (AAV) vector platform. However, to achieve therapeutic transgene expression, in some cases high vector doses are required, which are associated with a higher risk of triggering anti-capsid cytotoxic T-cell responses. Additionally, anti-AAV preexisting immunity can prevent liver transduction even at low neutralizing antibody (NAb) titers. Here, we describe the use of exosome-associated AAV (exo-AAV) vectors as a robust liver gene delivery system that allows the therapeutic vector dose to be decreased while protecting from preexisting humoral immunity to the capsid. The in vivo efficiency of liver targeting of standard AAV8 or AAV5 and exo-AAV8 or exo-AAV5 vectors expressing human coagulation factor IX (hF.IX) was evaluated. A significant enhancement of transduction efficiency was observed, and in hemophilia B mice treated with 4 × 1010 vector genomes per kilogram of exo-AAV8 vectors, a staggering ∼1 log increase in hF.IX transgene expression was observed, leading to superior correction of clotting time. Enhanced liver expression was also associated with an increase in the frequency of regulatory T cells in lymph nodes. The efficiency of exo- and standard AAV8 vectors in evading preexisting NAbs to the capsid was then evaluated in a passive immunization mouse model and in human sera. Exo-AAV8 gene delivery allowed for efficient transduction even in the presence of moderate NAb titers, thus potentially extending the proportion of subjects eligible for liver gene transfer. Exo-AAV vectors therefore represent a platform to improve the safety and efficacy of liver-directed gene transfer.


Molecular therapy. Methods & clinical development | 2018

Influence of Pre-existing Anti-capsid Neutralizing and Binding Antibodies on AAV Vector Transduction

Zachary Fitzpatrick; Christian Leborgne; Elena Barbon; Elisa Masat; Giuseppe Ronzitti; Laetitia van Wittenberghe; Alban Vignaud; Fanny Collaud; Séverine Charles; Marcelo Simon Sola; Fabienne Jouen; Olivier Boyer; Federico Mingozzi

Pre-existing immunity to adeno-associated virus (AAV) is highly prevalent in humans and can profoundly impact transduction efficiency. Despite the relevance to AAV-mediated gene transfer, relatively little is known about the fate of AAV vectors in the presence of neutralizing antibodies (NAbs). Similarly, the effect of binding antibodies (BAbs), with no detectable neutralizing activity, on AAV transduction is ill defined. Here, we delivered AAV8 vectors to mice carrying NAbs and demonstrated that AAV particles are taken up by both liver parenchymal and non-parenchymal cells; viral particles are then rapidly cleared, without resulting in transgene expression. In vitro, imaging of hepatocytes exposed to AAV vectors pre-incubated with either NAbs or BAbs revealed that virus is taken up by cells in both cases. Whereas no successful transduction was observed when AAV was pre-incubated with NAbs, an increased capsid internalization and transgene expression was observed in the presence of BAbs. Accordingly, AAV8 vectors administered to mice passively immunized with anti-AAV8 BAbs showed a more efficient liver transduction and a unique vector biodistribution profile compared to mice immunized with NAbs. These results highlight a virtually opposite effect of neutralizing and binding antibodies on AAV vectors transduction.


Science Translational Medicine | 2017

Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase

Francesco Puzzo; Pasqualina Colella; Maria G. Biferi; Deeksha Bali; Nicole K. Paulk; Patrice Vidal; Fanny Collaud; Marcelo Simon-Sola; Severine Charles; Romain Hardet; Christian Leborgne; Amine Meliani; Mathilde Cohen-Tannoudji; Stéphanie Astord; Bernard Gjata; Pauline Sellier; Laetitia van Wittenberghe; A. Vignaud; Florence Boisgerault; Martine Barkats; P. Laforêt; Mark A. Kay; Dwight D. Koeberl; Giuseppe Ronzitti; Federico Mingozzi

Liver delivery of engineered GAA transgenes to mice with Pompe disease rescued glycogen accumulation in multiple tissues. Revealing a secretable GAA for Pompe disease Pompe disease is a genetic disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to glycogen accumulation in all cells of the body. This accumulation leads to severe neuromuscular disabilities that can be life-threatening. Puzzo et al. used bioinformatic analysis, protein engineering, and gene therapy to develop and deliver a GAA transgene encoding a secretable GAA. Liver-specific, adeno-associated virus (AAV) vector–mediated GAA delivery rescued the Pompe disease phenotype in a mouse model and increased GAA expression in healthy monkeys, opening possibilities for future translation of this approach for treating Pompe disease. Glycogen storage disease type II or Pompe disease is a severe neuromuscular disorder caused by mutations in the lysosomal enzyme, acid α-glucosidase (GAA), which result in pathological accumulation of glycogen throughout the body. Enzyme replacement therapy is available for Pompe disease; however, it has limited efficacy, has high immunogenicity, and fails to correct pathological glycogen accumulation in nervous tissue and skeletal muscle. Using bioinformatics analysis and protein engineering, we developed transgenes encoding GAA that could be expressed and secreted by hepatocytes. Then, we used adeno-associated virus (AAV) vectors optimized for hepatic expression to deliver the GAA transgenes to Gaa knockout (Gaa−/−) mice, a model of Pompe disease. Therapeutic gene transfer to the liver rescued glycogen accumulation in muscle and the central nervous system, and ameliorated cardiac hypertrophy as well as muscle and respiratory dysfunction in the Gaa−/− mice; mouse survival was also increased. Secretable GAA showed improved therapeutic efficacy and lower immunogenicity compared to nonengineered GAA. Scale-up to nonhuman primates, and modeling of GAA expression in primary human hepatocytes using hepatotropic AAV vectors, demonstrated the therapeutic potential of AAV vector–mediated liver expression of secretable GAA for treating pathological glycogen accumulation in multiple tissues in Pompe disease.

Collaboration


Dive into the Christian Leborgne's collaboration.

Top Co-Authors

Avatar

Sylvie Boutin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fanny Collaud

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Federico Mingozzi

French Institute of Health and Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge