Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Lesterlin is active.

Publication


Featured researches published by Christian Lesterlin.


The EMBO Journal | 2005

KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase

Sarah Bigot; Omar A. Saleh; Christian Lesterlin; Carine Pages; Meriem El Karoui; Cynthia Dennis; Mikhail Grigoriev; Jean-François Allemand; François-Xavier Barre; François Cornet

Bacterial chromosomes are organized in replichores of opposite sequence polarity. This conserved feature suggests a role in chromosome dynamics. Indeed, sequence polarity controls resolution of chromosome dimers in Escherichia coli. Chromosome dimers form by homologous recombination between sister chromosomes. They are resolved by the combined action of two tyrosine recombinases, XerC and XerD, acting at a specific chromosomal site, dif, and a DNA translocase, FtsK, which is anchored at the division septum and sorts chromosomal DNA to daughter cells. Evidences suggest that DNA motifs oriented from the replication origin towards dif provide FtsK with the necessary information to faithfully distribute chromosomal DNA to either side of the septum, thereby bringing the dif sites together at the end of this process. However, the nature of the DNA motifs acting as FtsK orienting polar sequences (KOPS) was unknown. Using genetics, bioinformatics and biochemistry, we have identified a family of DNA motifs in the E. coli chromosome with KOPS activity.


Molecular Microbiology | 2004

Genetic recombination and the cell cycle: what we have learned from chromosome dimers

Christian Lesterlin; François-Xavier Barre; François Cornet

Genetic recombination is central to DNA metabolism. It promotes sequence diversity and maintains genome integrity in all organisms. However, it can have perverse effects and profoundly influence the cell cycle. In bacteria harbouring circular chromosomes, recombination frequently has an unwanted outcome, the formation of chromosome dimers. Dimers form by homologous recombination between sister chromosomes and are eventually resolved by the action of two site‐specific recombinases, XerC and XerD, at their target site, dif, located in the replication terminus of the chromosome. Studies of the Xer system and of the modalities of dimer formation and resolution have yielded important knowledge on how both homologous and site‐specific recombination are controlled and integrated in the cell cycle. Here, we briefly review these advances and highlight the important questions they raise.


Nature | 2014

MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae

Aurore Fleurie; Christian Lesterlin; Sylvie Manuse; Chao Zhao; Caroline Cluzel; Jean-Pierre Lavergne; Mirita Franz-Wachtel; Boris Macek; Christophe Combet; Erkin Kuru; Michael S. VanNieuwenhze; Yves V. Brun; David J. Sherratt; Christophe Grangeasse

In every living organism, cell division requires accurate identification of the division site and placement of the division machinery. In bacteria, this process is traditionally considered to begin with the polymerization of the highly conserved tubulin-like protein FtsZ into a ring that locates precisely at mid-cell. Over the past decades, several systems have been reported to regulate the spatiotemporal assembly and placement of the FtsZ ring. However, the human pathogen Streptococcus pneumoniae, in common with many other organisms, is devoid of these canonical systems and the mechanisms of positioning the division machinery remain unknown. Here we characterize a novel factor that locates at the division site before FtsZ and guides septum positioning in pneumococcus. Mid-cell-anchored protein Z (MapZ) forms ring structures at the cell equator and moves apart as the cell elongates, therefore behaving as a permanent beacon of division sites. MapZ then positions the FtsZ ring through direct protein–protein interactions. MapZ-mediated control differs from previously described systems mostly on the basis of negative regulation of FtsZ assembly. Furthermore, MapZ is an endogenous target of the Ser/Thr kinase StkP, which was recently shown to have a central role in cytokinesis and morphogenesis of S. pneumoniae. We show that both phosphorylated and non-phosphorylated forms of MapZ are required for proper Z-ring formation and dynamics. Altogether, this work uncovers a new mechanism for bacterial cell division that is regulated by phosphorylation and illustrates that nature has evolved a diversity of cell division mechanisms adapted to the different bacterial clades.


Nature | 2014

RecA bundles mediate homology pairing between distant sisters during DNA break repair

Christian Lesterlin; Graeme Ball; Lothar Schermelleh; David J. Sherratt

DNA double-strand break (DSB) repair by homologous recombination has evolved to maintain genetic integrity in all organisms. Although many reactions that occur during homologous recombination are known, it is unclear where, when and how they occur in cells. Here, by using conventional and super-resolution microscopy, we describe the progression of DSB repair in live Escherichia coli. Specifically, we investigate whether homologous recombination can occur efficiently between distant sister loci that have segregated to opposite halves of an E. coli cell. We show that a site-specific DSB in one sister can be repaired efficiently using distant sister homology. After RecBCD processing of the DSB, RecA is recruited to the cut locus, where it nucleates into a bundle that contains many more RecA molecules than can associate with the two single-stranded DNA regions that form at the DSB. Mature bundles extend along the long axis of the cell, in the space between the bulk nucleoid and the inner membrane. Bundle formation is followed by pairing, in which the two ends of the cut locus relocate at the periphery of the nucleoid and together move rapidly towards the homology of the uncut sister. After sister locus pairing, RecA bundles disassemble and proteins that act late in homologous recombination are recruited to give viable recombinants 1–2-generation-time equivalents after formation of the initial DSB. Mutated RecA proteins that do not form bundles are defective in sister pairing and in DSB-induced repair. This work reveals an unanticipated role of RecA bundles in channelling the movement of the DNA DSB ends, thereby facilitating the long-range homology search that occurs before the strand invasion and transfer reactions.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid

Mathew Stracy; Christian Lesterlin; Federico Garza de Leon; Stephan Uphoff; Pawel Zawadzki; Achillefs N. Kapanidis

Significance Transcription is one of the most fundamental processes for life. In eukaryotic cells, transcriptional activity is regulated to a large degree by chromosome packaging. In bacteria, despite the absence of a nuclear envelope and many of the DNA-packaging proteins of eukaryotes, the chromosome is still highly condensed into a structured object, the nucleoid. The spatial organization of transcription within the nucleoid and the effect of transcription on DNA organization remain poorly understood. In this work, we characterize how RNA polymerase accesses transcription sites on DNA, and show that active transcription can cause spatial reorganization of the nucleoid, with movement of gene loci out of the bulk of DNA as levels of transcription increase. Despite the fundamental importance of transcription, a comprehensive analysis of RNA polymerase (RNAP) behavior and its role in the nucleoid organization in vivo is lacking. Here, we used superresolution microscopy to study the localization and dynamics of the transcription machinery and DNA in live bacterial cells, at both the single-molecule and the population level. We used photoactivated single-molecule tracking to discriminate between mobile RNAPs and RNAPs specifically bound to DNA, either on promoters or transcribed genes. Mobile RNAPs can explore the whole nucleoid while searching for promoters, and spend 85% of their search time in nonspecific interactions with DNA. On the other hand, the distribution of specifically bound RNAPs shows that low levels of transcription can occur throughout the nucleoid. Further, clustering analysis and 3D structured illumination microscopy (SIM) show that dense clusters of transcribing RNAPs form almost exclusively at the nucleoid periphery. Treatment with rifampicin shows that active transcription is necessary for maintaining this spatial organization. In faster growth conditions, the fraction of transcribing RNAPs increases, as well as their clustering. Under these conditions, we observed dramatic phase separation between the densest clusters of RNAPs and the densest regions of the nucleoid. These findings show that transcription can cause spatial reorganization of the nucleoid, with movement of gene loci out of the bulk of DNA as levels of transcription increase. This work provides a global view of the organization of RNA polymerase and transcription in living cells.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Replication and segregation of an Escherichia coli chromosome with two replication origins

Xindan Wang; Christian Lesterlin; Rodrigo Reyes-Lamothe; Graeme Ball; David J. Sherratt

Characterized bacteria, unlike eukaryotes and some archaea, initiate replication bidirectionally from a single replication origin contained within a circular or linear chromosome. We constructed Escherichia coli cells with two WT origins separated by 1 Mb in their 4.64-Mb chromosome. Productive bidirectional replication initiated synchronously at both spatially separate origins. Newly replicated DNA from both origins was segregated sequentially as replication progressed, with two temporally and spatially separate replication termination events. Replication initiation occurred at a cell volume identical to that of cells with a single WT origin, showing that initiation control is independent of cellular and chromosomal oriC concentration. Cells containing just the ectopic origin initiated bidirectional replication at the expected cell mass and at the normal cellular location of that region. In all strains, spatial separation of sister loci adjacent to active origins occurred shortly after their replication, independently of whether replication initiated at the normal origin, the ectopic origin, or both origins.


Nucleic Acids Research | 2011

Activation of XerCD- dif recombination by the FtsK DNA translocase

Ian Grainge; Christian Lesterlin; David J. Sherratt

The FtsK translocase pumps dsDNA directionally at ∼5 kb/s and facilitates chromosome unlinking by activating XerCD site-specific recombination at dif, located in the replication terminus of the Escherichia coli chromosome. We show directly that the γ regulatory subdomain of FtsK activates XerD catalytic activity to generate Holliday junction intermediates that can then be resolved by XerC. Furthermore, we demonstrate that γ can activate XerCD-dif recombination in the absence of the translocase domain, when it is fused to XerCD, or added in isolation. In these cases the recombination products are topologically complex and would impair chromosome unlinking. We propose that FtsK translocation and activation of unlinking are normally coupled, with the translocation being essential for ensuring that the products of recombination are topologically unlinked, an essential feature of the role of FtsK in chromosome segregation.


The EMBO Journal | 2012

Sister chromatid interactions in bacteria revealed by a site‐specific recombination assay

Christian Lesterlin; Emmanuelle Gigant; Frédéric Boccard; Olivier Espéli

The process of Sister Chromosome Cohesion (SCC), which holds together sister chromatids upon replication, is essential for chromosome segregation and DNA repair in eukaryotic cells. Although cohesion at the molecular level has never been described in E. coli, previous studies have reported that sister sequences remain co‐localized for a period after their replication. Here, we have developed a new genetic recombination assay that probes the ability of newly replicated chromosome loci to interact physically. We show that Sister Chromatid Interaction (SCI) occurs exclusively within a limited time frame after replication. Importantly, we could differentiate sister cohesion and co‐localization since factors such as MatP and MukB that reduced the co‐localization of markers had no effect on molecular cohesion. The frequency of sister chromatid interactions were modulated by the activity of Topo‐IV, revealing that DNA topology modulates cohesion at the molecular scale in bacteria.


PLOS Genetics | 2008

Asymmetry of Chromosome Replichores Renders the DNA Translocase Activity of FtsK Essential for Cell Division and Cell Shape Maintenance in Escherichia coli

Christian Lesterlin; Carine Pages; Nelly Dubarry; Santanu Dasgupta; François Cornet

Bacterial chromosomes are organised as two replichores of opposite polarity that coincide with the replication arms from the ori to the ter region. Here, we investigated the effects of asymmetry in replichore organisation in Escherichia coli. We show that large chromosome inversions from the terminal junction of the replichores disturb the ongoing post-replicative events, resulting in inhibition of both cell division and cell elongation. This is accompanied by alterations of the segregation pattern of loci located at the inversion endpoints, particularly of the new replichore junction. None of these defects is suppressed by restoration of termination of replication opposite oriC, indicating that they are more likely due to the asymmetry of replichore polarity than to asymmetric replication. Strikingly, DNA translocation by FtsK, which processes the terminal junction of the replichores during cell division, becomes essential in inversion-carrying strains. Inactivation of the FtsK translocation activity leads to aberrant cell morphology, strongly suggesting that it controls membrane synthesis at the division septum. Our results reveal that FtsK mediates a reciprocal control between processing of the replichore polarity junction and cell division.


Cell Reports | 2015

The Localization and Action of Topoisomerase IV in Escherichia coli Chromosome Segregation Is Coordinated by the SMC Complex, MukBEF

Pawel Zawadzki; Mathew Stracy; Katarzyna Ginda; Katarzyna Zawadzka; Christian Lesterlin; Achillefs N. Kapanidis; David J. Sherratt

Summary The type II topoisomerase TopoIV, which has an essential role in Escherichia coli chromosome decatenation, interacts with MukBEF, an SMC (structural maintenance of chromosomes) complex that acts in chromosome segregation. We have characterized the intracellular dynamics of individual TopoIV molecules and the consequences of their interaction with MukBEF clusters by using photoactivated-localization microscopy. We show that ∼15 TopoIV molecules per cell are associated with MukBEF clusters that are preferentially localized to the replication origin region (ori), close to the long axis of the cell. A replication-dependent increase in the fraction of immobile molecules, together with a proposed catalytic cycle of ∼1.8 s, is consistent with the majority of active TopoIV molecules catalyzing decatenation, with a minority maintaining steady-state DNA supercoiling. Finally, we show that the MukB-ParC interaction is crucial for timely decatenation and segregation of newly replicated ori DNA.

Collaboration


Dive into the Christian Lesterlin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

François Cornet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Carine Pages

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

François-Xavier Barre

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Boccard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Romain Mercier

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge