Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Löfke is active.

Publication


Featured researches published by Christian Löfke.


The Plant Cell | 2011

Clathrin Mediates Endocytosis and Polar Distribution of PIN Auxin Transporters in Arabidopsis

Saeko Kitakura; Steffen Vanneste; Stéphanie Robert; Christian Löfke; Thomas Teichmann; Hirokazu Tanaka; Jiří Friml

This work demonstrates that clathrin-dependent endocytosis exists in plants. Moreover, it shows that clathrin function is required for polarity of PIN auxin transporters, auxin distribution, and associated developmental processes. Endocytosis is a crucial mechanism by which eukaryotic cells internalize extracellular and plasma membrane material, and it is required for a multitude of cellular and developmental processes in unicellular and multicellular organisms. In animals and yeast, the best characterized pathway for endocytosis depends on the function of the vesicle coat protein clathrin. Clathrin-mediated endocytosis has recently been demonstrated also in plant cells, but its physiological and developmental roles remain unclear. Here, we assessed the roles of the clathrin-mediated mechanism of endocytosis in plants by genetic means. We interfered with clathrin heavy chain (CHC) function through mutants and dominant-negative approaches in Arabidopsis thaliana and established tools to manipulate clathrin function in a cell type–specific manner. The chc2 single mutants and dominant-negative CHC1 (HUB) transgenic lines were defective in bulk endocytosis as well as in internalization of prominent plasma membrane proteins. Interference with clathrin-mediated endocytosis led to defects in constitutive endocytic recycling of PIN auxin transporters and their polar distribution in embryos and roots. Consistent with this, these lines had altered auxin distribution patterns and associated auxin transport-related phenotypes, such as aberrant embryo patterning, imperfect cotyledon specification, agravitropic growth, and impaired lateral root organogenesis. Together, these data demonstrate a fundamental role for clathrin function in cell polarity, growth, patterning, and organogenesis in plants.


Current Biology | 2012

ABP1 and ROP6 GTPase signaling regulate clathrin-mediated endocytosis in Arabidopsis roots.

Xu Chen; Satoshi Naramoto; Stéphanie Robert; Ricardo Tejos; Christian Löfke; Deshu Lin; Zhenbiao Yang; Jiri Friml

The dynamic spatial and temporal distribution of the crucial plant signaling molecule auxin is achieved by feedback coordination of auxin signaling and intercellular auxin transport pathways. Developmental roles of auxin have been attributed predominantly to its effect on transcription; however, an alternative pathway involving AUXIN BINDING PROTEIN1 (ABP1) has been proposed to regulate clathrin-mediated endocytosis in roots and Rho-like GTPase (ROP)-dependent pavement cell interdigitation in leaves. In this study, we show that ROP6 and its downstream effector RIC1 regulate clathrin association with the plasma membrane for clathrin-mediated endocytosis, as well as for its feedback regulation by auxin. Genetic analysis revealed that ROP6/RIC1 acts downstream of ABP1 to regulate endocytosis. This signaling circuit is also involved in the feedback regulation of PIN-FORMED 1 (PIN1) and PIN2 auxin transporters activity (via its constitutive endocytosis) and corresponding auxin transport-mediated processes, including root gravitropism and leave vascular tissue patterning. Our findings suggest that the signaling module auxin-ABP1-ROP6/RIC1-clathrin-PIN1/PIN2 is a shared component of the feedback regulation of auxin transport during both root and aerial development.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis

Wim Grunewald; Ive De Smet; Daniel R. Lewis; Christian Löfke; Leentje Jansen; Geert Goeminne; Robin Vanden Bossche; Mansour Karimi; Bert De Rybel; Bartel Vanholme; Thomas Teichmann; Wout Boerjan; Marc Van Montagu; Godelieve Gheysen; Gloria K. Muday; Jiří Friml; Tom Beeckman

Gradients of the plant hormone auxin, which depend on its active intercellular transport, are crucial for the maintenance of root meristematic activity. This directional transport is largely orchestrated by a complex interaction of specific influx and efflux carriers that mediate the auxin flow into and out of cells, respectively. Besides these transport proteins, plant-specific polyphenolic compounds known as flavonols have been shown to act as endogenous regulators of auxin transport. However, only limited information is available on how flavonol synthesis is developmentally regulated. Using reduction-of-function and overexpression approaches in parallel, we demonstrate that the WRKY23 transcription factor is needed for proper root growth and development by stimulating the local biosynthesis of flavonols. The expression of WRKY23 itself is controlled by auxin through the AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 transcriptional response pathway. Our results suggest a model in which WRKY23 is part of a transcriptional feedback loop of auxin on its own transport through local regulation of flavonol biosynthesis.


Biochemical Journal | 2008

Alternative metabolic fates of phosphatidylinositol produced by phosphatidylinositol synthase isoforms in Arabidopsis thaliana.

Christian Löfke; Till Ischebeck; Sabine König; Sabine Freitag; Ingo Heilmann

PtdIns is an important precursor for inositol-containing lipids, including polyphosphoinositides, which have multiple essential functions in eukaryotic cells. It was previously proposed that different regulatory functions of inositol-containing lipids may be performed by independent lipid pools; however, it remains unclear how such subcellular pools are established and maintained. In the present paper, a previously uncharacterized Arabidopsis gene product with similarity to the known Arabidopsis PIS (PtdIns synthase), PIS1, is shown to be an active enzyme, PIS2, capable of producing PtdIns in vitro. PIS1 and PIS2 diverged slightly in substrate preferences for CDP-DAG [cytidinediphospho-DAG (diacylglycerol)] species differing in fatty acid composition, PIS2 preferring unsaturated substrates in vitro. Transient expression of fluorescently tagged PIS1 or PIS2 in onion epidermal cells indicates localization of both enzymes in the ER (endoplasmic reticulum) and, possibly, Golgi, as was reported previously for fungal and mammalian homologues. Constitutive ectopic overexpression of PIS1 or PIS2 in Arabidopsis plants resulted in elevated levels of PtdIns in leaves. PIS2-overexpressors additionally exhibited significantly elevated levels of PtdIns(4)P and PtdIns(4,5)P(2), whereas polyphosphoinositides were not elevated in plants overexpressing PIS1. In contrast, PIS1-overexpressors contained significantly elevated levels of DAG and PtdEtn (phosphatidylethanolamine), an effect not observed in plants overexpressing PIS2. Biochemical analysis of transgenic plants with regards to fatty acids associated with relevant lipids indicates that lipids increasing with PIS1 overexpression were enriched in saturated or monounsaturated fatty acids, whereas lipids increasing with PIS2 overexpression, including polyphosphoinositides, contained more unsaturated fatty acids. The results indicate that PtdIns populations originating from different PIS isoforms may enter alternative routes of metabolic conversion, possibly based on specificity and immediate metabolic context of the biosynthetic enzymes.


Developmental Cell | 2011

Inositol trisphosphate-induced Ca2+ signaling modulates auxin transport and PIN polarity

Jing Zhang; Steffen Vanneste; Philip B. Brewer; Marta Michniewicz; Peter Grones; Jürgen Kleine-Vehn; Christian Löfke; Thomas Teichmann; Agnieszka Bielach; Bernard Cannoot; Klára Hoyerová; Xu Chen; Hong-Wei Xue; Eva Benková; Eva Zažímalová; Jiří Friml

The phytohormone auxin is an important determinant of plant development. Directional auxin flow within tissues depends on polar localization of PIN auxin transporters. To explore regulation of PIN-mediated auxin transport, we screened for suppressors of PIN1 overexpression (supo) and identified an inositol polyphosphate 1-phosphatase mutant (supo1), with elevated inositol trisphosphate (InsP(3)) and cytosolic Ca(2+) levels. Pharmacological and genetic increases in InsP(3) or Ca(2+) levels also suppressed the PIN1 gain-of-function phenotypes and caused defects in basal PIN localization, auxin transport and auxin-mediated development. In contrast, the reductions in InsP(3) levels and Ca(2+) signaling antagonized the effects of the supo1 mutation and disrupted preferentially apical PIN localization. InsP(3) and Ca(2+) are evolutionarily conserved second messengers involved in various cellular functions, particularly stress responses. Our findings implicate them as modifiers of cell polarity and polar auxin transport, and highlight a potential integration point through which Ca(2+) signaling-related stimuli could influence auxin-mediated development.


The Plant Cell | 2013

Phosphatidylinositol 4,5-Bisphosphate Influences PIN Polarization by Controlling Clathrin-Mediated Membrane Trafficking in Arabidopsis

Till Ischebeck; Stephanie Werner; Praveen Krishnamoorthy; Jennifer Lerche; Mónica Meijón; Irene Stenzel; Christian Löfke; Theresa Wiessner; Yang Ju Im; Imara Y. Perera; Tim Iven; Ivo Feussner; Wolfgang Busch; Wendy F. Boss; Thomas Teichmann; Bettina Hause; Staffan Persson; Ingo Heilmann

Plant growth follows positional cues provided by the phytohormone auxin. A key determinant of auxin distribution is the asymmetric plasma membrane localization of PIN-auxin transporters, which involves complex endocytotic cycling. Endocytosis and PIN distribution require the regulatory phospholipid, PtdIns(4,5)P2, which is formed by PI4P 5-kinases that themselves display polarized distribution. The functions of the minor phospholipid phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] during vegetative plant growth remain obscure. Here, we targeted two related phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) PIP5K1 and PIP5K2, which are expressed ubiquitously in Arabidopsis thaliana. A pip5k1 pip5k2 double mutant with reduced PtdIns(4,5)P2 levels showed dwarf stature and phenotypes suggesting defects in auxin distribution. The roots of the pip5k1 pip5k2 double mutant had normal auxin levels but reduced auxin transport and altered distribution. Fluorescence-tagged auxin efflux carriers PIN-FORMED (PIN1)–green fluorescent protein (GFP) and PIN2-GFP displayed abnormal, partially apolar distribution. Furthermore, fewer brefeldin A–induced endosomal bodies decorated by PIN1-GFP or PIN2-GFP formed in pip5k1 pip5k2 mutants. Inducible overexpressor lines for PIP5K1 or PIP5K2 also exhibited phenotypes indicating misregulation of auxin-dependent processes, and immunolocalization showed reduced membrane association of PIN1 and PIN2. PIN cycling and polarization require clathrin-mediated endocytosis and labeled clathrin light chain also displayed altered localization patterns in the pip5k1 pip5k2 double mutant, consistent with a role for PtdIns(4,5)P2 in the regulation of clathrin-mediated endocytosis. Further biochemical tests on subcellular fractions enriched for clathrin-coated vesicles (CCVs) indicated that pip5k1 and pip5k2 mutants have reduced CCV-associated PI4P 5-kinase activity. Together, the data indicate an important role for PtdIns(4,5)P2 in the control of clathrin dynamics and in auxin distribution in Arabidopsis.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism

Christian Löfke; Marta Zwiewka; Ingo Heilmann; Marc Van Montagu; Thomas Teichmann; Jiri Friml

Gravitropic bending of plant organs is mediated by an asymmetric signaling of the plant hormone auxin between the upper and lower side of the respective organ. Here, we show that also another plant hormone, gibberellic acid (GA), shows asymmetric action during gravitropic responses. Immunodetection using an antibody against GA and monitoring GA signaling output by downstream degradation of DELLA proteins revealed an asymmetric GA distribution and response with the maximum at the lower side of gravistimulated roots. Genetic or pharmacological manipulation of GA levels or response affects gravity-mediated auxin redistribution and root bending response. The higher GA levels at the lower side of the root correlate with increased amounts of PIN-FORMED2 (PIN2) auxin transporter at the plasma membrane. The observed increase in PIN2 stability is caused by a specific GA effect on trafficking of PIN proteins to lytic vacuoles that presumably occurs downstream of brefeldin A-sensitive endosomes. Our results suggest that asymmetric auxin distribution instructive for gravity-induced differential growth is consolidated by the asymmetric action of GA that stabilizes the PIN-dependent auxin stream along the lower side of gravistimulated roots.


Mechanisms of Development | 2013

Posttranslational modification and trafficking of PIN auxin efflux carriers

Christian Löfke; Christian Luschnig; Jürgen Kleine-Vehn

Cell-to-cell communication is absolutely essential for multicellular organisms. Both animals and plants use chemicals called hormones for intercellular signaling. However, multicellularity of plants and animals has evolved independently, which led to establishment of distinct strategies in order to cope with variations in an ever-changing environment. The phytohormone auxin is crucial to plant development and patterning. PIN auxin efflux carrier-driven polar auxin transport regulates plant development as it controls asymmetric auxin distribution (auxin gradients), which in turn modulates a wide range of developmental processes. Internal and external cues trigger a number of posttranslational PIN auxin carrier modifications that were demonstrated to decisively influence variations in adaptive growth responses. In this review, we highlight recent advances in the analysis of posttranslational modification of PIN auxin efflux carriers, such as phosphorylation and ubiquitylation, and discuss their eminent role in directional vesicle trafficking, PIN protein de-/stabilization and auxin transport activity. We conclude with updated models, in which we attempt to integrate the mechanistic relevance of posttranslational modifications of PIN auxin carriers for the dynamic nature of plant development.


Molecular Plant | 2010

Functional Cooperativity of Enzymes of Phosphoinositide Conversion According to Synergistic Effects on Pectin Secretion in Tobacco Pollen Tubes

Till Ischebeck; Linh Hai Vu; Xu Jin; Irene Stenzel; Christian Löfke; Ingo Heilmann

The Arabidopsis phosphoinositide kinases PI4Kβ1 and PIP5K5 have been implicated in the control of directional vesicle trafficking underlying polar tip growth in pollen tubes. PI4Kβ1 and PIP5K5 catalyze key consecutive steps of phosphoinositide conversion, and it appears obvious that phosphatidylinositol-4-phosphate formed by PI4Kβ1 might act as a substrate for phosphatidylinositol-4,5-bisphosphate formation by PIP5K5. However, this hypothesis has not been experimentally addressed and distinct localization patterns of PI4Kβ1, PIP5K5, and also PI-synthases (PIS) generating phosphatidylinositol suggest additional complexity. Here, the synergistic functionality of enzymes of phosphoinositide conversion was assessed. In tobacco and Arabidopsis pollen tubes, phosphoinositides influence the apical secretion of pectin, and increased pectin deposition results in characteristic morphological alterations. Catalytically active and dominant negative variants of PI4Kβ1 and PIP5K5 were systematically co-expressed in tobacco pollen tubes and the incidence of morphologies related to enhanced pectin secretion was evaluated. The data support a proposed functional interplay of PI4Kβ1 and PIP5K5 at the trans-Golgi network, mediating directional vesicle trafficking. Co-expression experiments additionally including PIS isoforms, PIS1 or PIS2, indicate that pectin secretion is synergistically mediated by PI4Kβ1 and PIP5K5 acting on PtdIns formed by PIS2 rather than PIS1. Possible ramifications for the preferential channeling of phosphoinositide intermediates between particular isoforms of PI pathway enzymes are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression

David Scheuring; Christian Löfke; Falco Krüger; Maike Kittelmann; Ahmed Eisa; Louise Hughes; Richard S. Smith; Chris Hawes; Karin Schumacher; Jürgen Kleine-Vehn

Significance Control of cell size is fundamentally different in animals and plants. The actin cytoskeleton has a direct impact on the control of cell size in animals, but its mechanistic contribution to cellular growth in plants remains largely elusive. Here, we show that actin is used in a plant-specific growth mechanism by controlling the volume of the largest plant organelle, the vacuole. Actin is required for the auxin-dependent convolution and deconvolution of the vacuole, steering the vacuolar occupancy of the cell. This function indirectly impacts cytosol size and presumably allows plant cells to grow without alterations in cytosolic content. These findings could lead to a better understanding of plant cells’ ability to expand faster than vacuole-lacking animal cells. The cytoskeleton is an early attribute of cellular life, and its main components are composed of conserved proteins. The actin cytoskeleton has a direct impact on the control of cell size in animal cells, but its mechanistic contribution to cellular growth in plants remains largely elusive. Here, we reveal a role of actin in regulating cell size in plants. The actin cytoskeleton shows proximity to vacuoles, and the phytohormone auxin not only controls the organization of actin filaments but also impacts vacuolar morphogenesis in an actin-dependent manner. Pharmacological and genetic interference with the actin–myosin system abolishes the effect of auxin on vacuoles and thus disrupts its negative influence on cellular growth. SEM-based 3D nanometer-resolution imaging of the vacuoles revealed that auxin controls the constriction and luminal size of the vacuole. We show that this actin-dependent mechanism controls the relative vacuolar occupancy of the cell, thus suggesting an unanticipated mechanism for cytosol homeostasis during cellular growth.

Collaboration


Dive into the Christian Löfke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Till Ischebeck

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Jiří Friml

Institute of Science and Technology Austria

View shared research outputs
Top Co-Authors

Avatar

Irene Stenzel

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiri Friml

Institute of Science and Technology Austria

View shared research outputs
Researchain Logo
Decentralizing Knowledge