Christian M. K. Sieber
Joint Genome Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian M. K. Sieber.
Chemistry & Biology | 2013
Eva-Maria Niehaus; Karin Kleigrewe; Philipp Wiemann; Lena Studt; Christian M. K. Sieber; Lanelle R. Connolly; Michael Freitag; Ulrich Güldener; Bettina Tudzynski; Hans-Ulrich Humpf
In this work, the biosynthesis and regulation of the polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS)-derived mutagenic mycotoxin fusarin C was studied in the fungus Fusarium fujikuroi. The fusarin gene cluster consists of nine genes (fus1-fus9) that are coexpressed under high-nitrogen and acidic pH conditions. Chromatin immunoprecipitation revealed a correlation between high expression and enrichment of activating H3K9-acetylation marks under inducing conditions. We provide evidence that only four genes are sufficient for the biosynthesis. The combination of genetic engineering with nuclear magnetic resonance and mass-spectrometry-based structure elucidation allowed the discovery of the putative fusarin biosynthetic pathway. Surprisingly, we indicate that PKS/NRPS releases its product with an open ring structure, probably as an alcohol. Our data indicate that 2-pyrrolidone ring closure, oxidation at C-20, and, finally, methylation at C-20 are catalyzed by Fus2, Fus8, and Fus9, respectively.
PLOS ONE | 2014
Christian M. K. Sieber; Wanseon Lee; Philip Wong; Martin Münsterkötter; Hans-Werner Mewes; Clemens Schmeitzl; Elisabeth Varga; Franz Berthiller; Gerhard Adam; Ulrich Güldener
Fungal secondary metabolite biosynthesis genes are of major interest due to the pharmacological properties of their products (like mycotoxins and antibiotics). The genome of the plant pathogenic fungus Fusarium graminearum codes for a large number of candidate enzymes involved in secondary metabolite biosynthesis. However, the chemical nature of most enzymatic products of proteins encoded by putative secondary metabolism biosynthetic genes is largely unknown. Based on our analysis we present 67 gene clusters with significant enrichment of predicted secondary metabolism related enzymatic functions. 20 gene clusters with unknown metabolites exhibit strong gene expression correlation in planta and presumably play a role in virulence. Furthermore, the identification of conserved and over-represented putative transcription factor binding sites serves as additional evidence for cluster co-regulation. Orthologous cluster search provided insight into the evolution of secondary metabolism clusters. Some clusters are characteristic for the Fusarium phylum while others show evidence of horizontal gene transfer as orthologs can be found in representatives of the Botrytis or Cochliobolus lineage. The presented candidate clusters provide valuable targets for experimental examination.
PLOS ONE | 2014
Eva-Maria Niehaus; Slavica Janevska; Katharina W. von Bargen; Christian M. K. Sieber; Henning Harrer; Hans-Ulrich Humpf; Bettina Tudzynski
The fungus F. fujikuroi is well known for its production of gibberellins causing the ‘bakanae’ disease of rice. Besides these plant hormones, it is able to produce other secondary metabolites (SMs), such as pigments and mycotoxins. Genome sequencing revealed altogether 45 potential SM gene clusters, most of which are cryptic and silent. In this study we characterize a new non-ribosomal peptide synthetase (NRPS) gene cluster that is responsible for the production of the cyclic tetrapeptide apicidin F (APF). This new SM has structural similarities to the known histone deacetylase inhibitor apicidin. To gain insight into the biosynthetic pathway, most of the 11 cluster genes were deleted, and the mutants were analyzed by HPLC-DAD and HPLC-HRMS for their ability to produce APF or new derivatives. Structure elucidation was carried out be HPLC-HRMS and NMR analysis. We identified two new derivatives of APF named apicidin J and K. Furthermore, we studied the regulation of APF biosynthesis and showed that the cluster genes are expressed under conditions of high nitrogen and acidic pH in a manner dependent on the nitrogen regulator AreB, and the pH regulator PacC. In addition, over-expression of the atypical pathway-specific transcription factor (TF)-encoding gene APF2 led to elevated expression of the cluster genes under inducing and even repressing conditions and to significantly increased product yields. Bioinformatic analyses allowed the identification of a putative Apf2 DNA-binding (“Api-box”) motif in the promoters of the APF genes. Point mutations in this sequence motif caused a drastic decrease of APF production indicating that this motif is essential for activating the cluster genes. Finally, we provide a model of the APF biosynthetic pathway based on chemical identification of derivatives in the cultures of deletion mutants.
Genome Biology and Evolution | 2016
Julien Y. Dutheil; Gertrud Mannhaupt; Gabriel Schweizer; Christian M. K. Sieber; Martin Münsterkötter; Ulrich Güldener; Jan Schirawski; Regine Kahmann
Smut fungi are plant pathogens mostly parasitizing wild species of grasses as well as domesticated cereal crops. Genome analysis of several smut fungi including Ustilago maydis revealed a singular clustered organization of genes encoding secreted effectors. In U. maydis, many of these clusters have a role in virulence. Reconstructing the evolutionary history of clusters of effector genes is difficult because of their intrinsically fast evolution, which erodes the phylogenetic signal and homology relationships. Here, we describe the use of comparative evolutionary analyses of quality draft assemblies of genomes to study the mechanisms of this evolution. We report the genome sequence of a South African isolate of Sporisorium scitamineum, a smut fungus parasitizing sugar cane with a phylogenetic position intermediate to the two previously sequenced species U. maydis and Sporisorium reilianum. We show that the genome of S. scitamineum contains more and larger gene clusters encoding secreted effectors than any previously described species in this group. We trace back the origin of the clusters and find that their evolution is mainly driven by tandem gene duplication. In addition, transposable elements play a major role in the evolution of the clustered genes. Transposable elements are significantly associated with clusters of genes encoding fast evolving secreted effectors. This suggests that such clusters represent a case of genome compartmentalization that restrains the activity of transposable elements on genes under diversifying selection for which this activity is potentially beneficial, while protecting the rest of the genome from its deleterious effect.
Environmental Microbiology | 2016
Lena Studt; Slavica Janevska; Eva-Maria Niehaus; Immo Burkhardt; Birgit Arndt; Christian M. K. Sieber; Hans-Ulrich Humpf; Jeroen S. Dickschat; Bettina Tudzynski
Fusaric acid (FSA) is a mycotoxin produced by several fusaria, including the rice pathogen Fusarium fujikuroi. Genes involved in FSA biosynthesis were previously identified as a cluster containing a polyketide synthase (PKS)-encoding (FUB1) and four additional genes (FUB2-FUB5). However, the biosynthetic steps leading to FSA as well as the origin of the nitrogen atom, which is incorporated into the polyketide backbone, remained unknown. In this study, seven additional cluster genes (FUB6-FUB12) were identified via manipulation of the global regulator FfSge1. The extended FUB gene cluster encodes two Zn(II)2 Cys6 transcription factors: Fub10 positively regulates expression of all FUB genes, whereas Fub12 is involved in the formation of the two FSA derivatives, i.e. dehydrofusaric acid and fusarinolic acid, serving as a detoxification mechanism. The major facilitator superfamily transporter Fub11 functions in the export of FSA out of the cell and is essential when FSA levels become critical. Next to Fub1, a second key enzyme was identified, the non-canonical non-ribosomal peptide synthetase Fub8. Chemical analyses of generated mutant strains allowed for the identification of a triketide as PKS product and the proposition of an FSA biosynthetic pathway, thereby unravelling the unique formation of a hybrid metabolite consisting of this triketide and an amino acid moiety.
Genome Biology and Evolution | 2016
Eva-Maria Niehaus; Martin Münsterkötter; Robert H. Proctor; Daren W. Brown; Amir Sharon; Yifat Idan; Liat Oren-Young; Christian M. K. Sieber; Ondřej Novák; Aleš Pěnčík; Danuše Tarkowská; Kristýna Hromadová; Stanley Freeman; Marcel Maymon; Meirav Elazar; Sahar A. Youssef; El Said M. El-Shabrawy; Abdel Baset A. Shalaby; Petra M. Houterman; Nelson L. Brock; Immo Burkhardt; E. A. Tsavkelova; Jeroen S. Dickschat; Petr Galuszka; Ulrich Güldener; Bettina Tudzynski
Species of the Fusarium fujikuroi species complex (FFC) cause a wide spectrum of often devastating diseases on diverse agricultural crops, including coffee, fig, mango, maize, rice, and sugarcane. Although species within the FFC are difficult to distinguish by morphology, and their genes often share 90% sequence similarity, they can differ in host plant specificity and life style. FFC species can also produce structurally diverse secondary metabolites (SMs), including the mycotoxins fumonisins, fusarins, fusaric acid, and beauvericin, and the phytohormones gibberellins, auxins, and cytokinins. The spectrum of SMs produced can differ among closely related species, suggesting that SMs might be determinants of host specificity. To date, genomes of only a limited number of FFC species have been sequenced. Here, we provide draft genome sequences of three more members of the FFC: a single isolate of F. mangiferae, the cause of mango malformation, and two isolates of F. proliferatum, one a pathogen of maize and the other an orchid endophyte. We compared these genomes to publicly available genome sequences of three other FFC species. The comparisons revealed species-specific and isolate-specific differences in the composition and expression (in vitro and in planta) of genes involved in SM production including those for phytohormome biosynthesis. Such differences have the potential to impact host specificity and, as in the case of F. proliferatum, the pathogenic versus endophytic life style.
Environmental Microbiology | 2015
Caroline B. Michielse; Lena Studt; Slavica Janevska; Christian M. K. Sieber; Birgit Arndt; José J. Espino; Hans-Ulrich Humpf; Ulrich Güldener; Bettina Tudzynski
The plant pathogenic fungus Fusarium fujikuroi is the causal agent of bakanae disease on rice due to its ability to produce gibberellins. Besides these phytohormones, F. fujikuroi is able to produce several other secondary metabolites (SMs). Although much progress has been made in the field of secondary metabolism, the transcriptional regulation of SM biosynthesis is complex and still incompletely understood. Environmental conditions, global as well as pathway-specific regulators and chromatin remodelling have been shown to play major roles. Here, the role of FfSge1, a homologue of the morphological switch regulators Wor1 and Ryp1 in Candida albicans and Histoplasma capsulatum, respectively, is explored with emphasis on secondary metabolism. FfSge1 is not required for formation of conidia and pathogenicity but is involved in vegetative growth. Transcriptome analysis of the mutant Δffsge1 compared with the wild type, as well as comparative chemical analysis between the wild type, Δffsge1 and OE:FfSGE1, revealed that FfSge1 functions as a global activator of secondary metabolism in F. fujikuroi. Double mutants of FfSGE1 and other SM regulatory genes brought insights into the hierarchical regulation of secondary metabolism. In addition, FfSge1 is also required for expression of a yet uncharacterized SM gene cluster containing a non-canonical non-ribosomal peptide synthetase.
BMC Genomics | 2016
Markus Schlegel; Martin Münsterkötter; Ulrich Güldener; Rémy Bruggmann; Angelo Duò; Matthieu Hainaut; Bernard Henrissat; Christian M. K. Sieber; Dirk Hoffmeister; Christoph R. Grünig
BackgroundWhereas an increasing number of pathogenic and mutualistic ascomycetous species were sequenced in the past decade, species showing a seemingly neutral association such as root endophytes received less attention. In the present study, the genome of Phialocephala subalpina, the most frequent species of the Phialocephala fortinii s.l. – Acephala applanata species complex, was sequenced for insight in the genome structure and gene inventory of these wide-spread root endophytes.ResultsThe genome of P. subalpina was sequenced using Roche/454 GS FLX technology and a whole genome shotgun strategy. The assembly resulted in 205 scaffolds and a genome size of 69.7 Mb. The expanded genome size in P. subalpina was not due to the proliferation of transposable elements or other repeats, as is the case with other ascomycetous genomes. Instead, P. subalpina revealed an expanded gene inventory that includes 20,173 gene models. Comparative genome analysis of P. subalpina with 13 ascomycetes shows that P. subalpina uses a versatile gene inventory including genes specific for pathogens and saprophytes. Moreover, the gene inventory for carbohydrate active enzymes (CAZymes) was expanded including genes involved in degradation of biopolymers, such as pectin, hemicellulose, cellulose and lignin.ConclusionsThe analysis of a globally distributed root endophyte allowed detailed insights in the gene inventory and genome organization of a yet largely neglected group of organisms. We showed that the ubiquitous root endophyte P. subalpina has a broad gene inventory that links pathogenic and saprophytic lifestyles.
Nature microbiology | 2018
Alexander J. Probst; Bethany S. Ladd; Jessica Jarett; David Geller-McGrath; Christian M. K. Sieber; Joanne B. Emerson; Karthik Anantharaman; Brian C. Thomas; Rex R. Malmstrom; Michaela Stieglmeier; Andreas Klingl; Tanja Woyke; M. Cathryn Ryan; Jillian F. Banfield
An enormous diversity of previously unknown bacteria and archaea has been discovered recently, yet their functional capacities and distributions in the terrestrial subsurface remain uncertain. Here, we continually sampled a CO2-driven geyser (Colorado Plateau, Utah, USA) over its 5-day eruption cycle to test the hypothesis that stratified, sandstone-hosted aquifers sampled over three phases of the eruption cycle have microbial communities that differ both in membership and function. Genome-resolved metagenomics, single-cell genomics and geochemical analyses confirmed this hypothesis and linked microorganisms to groundwater compositions from different depths. Autotrophic Candidatus “Altiarchaeum sp.” and phylogenetically deep-branching nanoarchaea dominate the deepest groundwater. A nanoarchaeon with limited metabolic capacity is inferred to be a potential symbiont of the Ca. “Altiarchaeum”. Candidate Phyla Radiation bacteria are also present in the deepest groundwater and they are relatively abundant in water from intermediate depths. During the recovery phase of the geyser, microaerophilic Fe- and S-oxidizers have high in situ genome replication rates. Autotrophic Sulfurimonas sustained by aerobic sulfide oxidation and with the capacity for N2 fixation dominate the shallow aquifer. Overall, 104 different phylum-level lineages are present in water from these subsurface environments, with uncultivated archaea and bacteria partitioned to the deeper subsurface.Analysis of a CO2-driven geyser over a complete eruption cycle showed temporal changes in microbial community composition and function, associated with eruption phase and aquifer water depth, and revealed a putative archaeal symbiosis.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Ping Hu; Eric A. Dubinsky; Alexander J. Probst; Jian Wang; Christian M. K. Sieber; Lauren M. Tom; Piero R. Gardinali; Jillian F. Banfield; Ronald M. Atlas; Gary L. Andersen
Significance The Deepwater Horizon drilling accident was the first major release of oil and natural gases in the deep ocean, and considerable uncertainty remains about the fate of vast amounts of hydrocarbons that never reached the surface. We simulated the deep-sea plumes of dispersed oil microdroplets and measured biodegradation of crude oil components. We successfully reproduced the successive blooms of diverse bacteria observed in the field and obtained near-complete genomes of all major hydrocarbon-degrading species, providing an assessment of the metabolic capabilities of the microbial community responsible for biodegradation. Our results show that rapidly degraded components of oil were consumed by bacteria with highly specialized degradation capabilities and that crude oil alone could explain the microbial dynamics observed in the field. The Deepwater Horizon (DWH) accident released an estimated 4.1 million barrels of oil and 1010 mol of natural gas into the Gulf of Mexico, forming deep-sea plumes of dispersed oil droplets and dissolved gases that were largely degraded by bacteria. During the course of this 3-mo disaster a series of different bacterial taxa were enriched in succession within deep plumes, but the metabolic capabilities of the different populations that controlled degradation rates of crude oil components are poorly understood. We experimentally reproduced dispersed plumes of fine oil droplets in Gulf of Mexico seawater and successfully replicated the enrichment and succession of the principal oil-degrading bacteria observed during the DWH event. We recovered near-complete genomes, whose phylogeny matched those of the principal biodegrading taxa observed in the field, including the DWH Oceanospirillales (now identified as a Bermanella species), multiple species of Colwellia, Cycloclasticus, and other members of Gammaproteobacteria, Flavobacteria, and Rhodobacteria. Metabolic pathway analysis, combined with hydrocarbon compositional analysis and species abundance data, revealed substrate specialization that explained the successional pattern of oil-degrading bacteria. The fastest-growing bacteria used short-chain alkanes. The analyses also uncovered potential cooperative and competitive relationships, even among close relatives. We conclude that patterns of microbial succession following deep ocean hydrocarbon blowouts are predictable and primarily driven by the availability of liquid petroleum hydrocarbons rather than natural gases.