Christian M. Nefzger
Australian Regenerative Medicine Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian M. Nefzger.
Cell | 2012
Jose M. Polo; Endre Anderssen; Ryan M. Walsh; Benjamin A. Schwarz; Christian M. Nefzger; Sue Mei Lim; Marti Borkent; Effie Apostolou; Sara Alaei; Jennifer Cloutier; Ori Bar-Nur; Sihem Cheloufi; Matthias Stadtfeld; Maria E. Figueroa; Daisy Robinton; Sridaran Natesan; Ari Melnick; Jinfang Zhu; Sridhar Ramaswamy
Factor-induced reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is inefficient, complicating mechanistic studies. Here, we examined defined intermediate cell populations poised to becoming iPSCs by genome-wide analyses. We show that induced pluripotency elicits two transcriptional waves, which are driven by c-Myc/Klf4 (first wave) and Oct4/Sox2/Klf4 (second wave). Cells that become refractory to reprogramming activate the first but fail to initiate the second transcriptional wave and can be rescued by elevated expression of all four factors. The establishment of bivalent domains occurs gradually after the first wave, whereas changes in DNA methylation take place after the second wave when cells acquire stable pluripotency. This integrative analysis allowed us to identify genes that act as roadblocks during reprogramming and surface markers that further enrich for cells prone to forming iPSCs. Collectively, our data offer new mechanistic insights into the nature and sequence of molecular events inherent to cellular reprogramming.
Nature Immunology | 2017
Eliana Mariño; James L Richards; Keiran H McLeod; Dragana Stanley; Yu Anne Yap; Jacinta Knight; Craig McKenzie; Jan Kranich; Ana Carolina Oliveira; Fernando J. Rossello; Balasubramanian Krishnamurthy; Christian M. Nefzger; Laurence Macia; Alison N. Thorburn; Alan G. Baxter; Grant Morahan; Lee H. Wong; Jose M. Polo; Robert J. Moore; Trevor Lockett; Julie M. Clarke; David L. Topping; Leonard C. Harrison; Charles R. Mackay
Gut dysbiosis might underlie the pathogenesis of type 1 diabetes. In mice of the non-obese diabetic (NOD) strain, we found that key features of disease correlated inversely with blood and fecal concentrations of the microbial metabolites acetate and butyrate. We therefore fed NOD mice specialized diets designed to release large amounts of acetate or butyrate after bacterial fermentation in the colon. Each diet provided a high degree of protection from diabetes, even when administered after breakdown of immunotolerance. Feeding mice a combined acetate- and butyrate-yielding diet provided complete protection, which suggested that acetate and butyrate might operate through distinct mechanisms. Acetate markedly decreased the frequency of autoreactive T cells in lymphoid tissues, through effects on B cells and their ability to expand populations of autoreactive T cells. A diet containing butyrate boosted the number and function of regulatory T cells, whereas acetate- and butyrate-yielding diets enhanced gut integrity and decreased serum concentration of diabetogenic cytokines such as IL-21. Medicinal foods or metabolites might represent an effective and natural approach for countering the numerous immunological defects that contribute to T cell–dependent autoimmune diseases.
Nature Genetics | 2016
Owen J. L. Rackham; Jaber Firas; Hai Fang; Matt E. Oates; Melissa L. Holmes; Anja S. Knaupp; Harukazu Suzuki; Christian M. Nefzger; Carsten O. Daub; Jay W. Shin; Enrico Petretto; Alistair R. R. Forrest; Yoshihide Hayashizaki; Jose M. Polo; Julian Gough
Transdifferentiation, the process of converting from one cell type to another without going through a pluripotent state, has great promise for regenerative medicine. The identification of key transcription factors for reprogramming is currently limited by the cost of exhaustive experimental testing of plausible sets of factors, an approach that is inefficient and unscalable. Here we present a predictive system (Mogrify) that combines gene expression data with regulatory network information to predict the reprogramming factors necessary to induce cell conversion. We have applied Mogrify to 173 human cell types and 134 tissues, defining an atlas of cellular reprogramming. Mogrify correctly predicts the transcription factors used in known transdifferentiations. Furthermore, we validated two new transdifferentiations predicted by Mogrify. We provide a practical and efficient mechanism for systematically implementing novel cell conversions, facilitating the generalization of reprogramming of human cells. Predictions are made available to help rapidly further the field of cell conversion.
Nature Communications | 2013
Gurpreet Kaur; Mauro W. Costa; Christian M. Nefzger; Juan Silva; Juan Carlos Fierro-González; Jose M. Polo; Toby D. M. Bell; Nicolas Plachta
Transcription factors use diffusion to search the DNA, yet the mechanisms controlling transcription factor diffusion during mammalian development remain poorly understood. Here we combine photoactivation and fluorescence correlation spectroscopy to study transcription factor diffusion in developing mouse embryos. We show that the pluripotency-associated transcription factor Oct4 displays both fast and Brownian and slower subdiffusive behaviours that are controlled by DNA interactions. Following cell lineage specification, the slower DNA-interacting diffusion fraction distinguishes pluripotent from extraembryonic cell nuclei. Similar to Oct4, Sox2 shows slower diffusion in pluripotent cells while Cdx2 displays opposite dynamics, suggesting that slow diffusion may represent a general feature of transcription factors in lineages where they are essential. Slow Oct4 subdiffusive behaviours are conserved in embryonic stem cells and induced pluripotent stem cells (iPS cells), and lost during differentiation. We also show that Oct4 diffusion depends on its interaction with ERG-associated protein with SET domain. Photoactivation and fluorescence correlation spectroscopy provides a new intravital approach to study transcription factor diffusion in complex in vivo systems.
Stem Cells | 2013
Richard David William Kelly; Andrew E. Rodda; Adam Dickinson; Arsalan Mahmud; Christian M. Nefzger; William Lee; John S. Forsythe; Jose M. Polo; Ian A. Trounce; Matthew McKenzie; David R. Nisbet; Justin C. St. John
Mitochondrial DNA haplotypes are associated with various phenotypes, such as altered susceptibility to disease, environmental adaptations, and aging. Accumulating evidence suggests that mitochondrial DNA is essential for cell differentiation and the cell phenotype. However, the effects of different mitochondrial DNA haplotypes on differentiation and development remain to be determined. Using embryonic stem cell lines possessing the same Mus musculus chromosomes but harboring one of Mus musculus, Mus spretus, or Mus terricolor mitochondrial DNA haplotypes, we have determined the effects of different mitochondrial DNA haplotypes on chromosomal gene expression, differentiation, and mitochondrial metabolism. In undifferentiated and differentiating embryonic stem cells, we observed mitochondrial DNA haplotype‐specific expression of genes involved in pluripotency, differentiation, mitochondrial energy metabolism, and DNA methylation. These mitochondrial DNA haplotypes also influenced the potential of embryonic stem cells to produce spontaneously beating cardiomyocytes. The differences in gene expression patterns and cardiomyocyte production were independent of ATP content, oxygen consumption, and respiratory capacity, which until now have been considered to be the primary roles of mitochondrial DNA. Differentiation of embryonic stem cells harboring the different mitochondrial DNA haplotypes in a 3D environment significantly increased chromosomal gene expression for all haplotypes during differentiation. However, haplotype‐specific differences in gene expression patterns were maintained in this environment. Taken together, these results provide significant insight into the phenotypic consequences of mitochondrial DNA haplotypes and demonstrate their influence on differentiation and development. We propose that mitochondrial DNA haplotypes play a pivotal role in the process of differentiation and mediate the fate of the cell. STEM CELLS 2013;31:703–716
The EMBO Journal | 2015
Katja Horvay; Thierry Jarde; Franca Casagranda; Victoria M. Perreau; Katharina Haigh; Christian M. Nefzger; Reyhan Akhtar; Thomas Gridley; Geert Berx; Jody J. Haigh; Nick Barker; Jose M. Polo; Gary R. Hime; Helen E. Abud
Snail family members regulate epithelial‐to‐mesenchymal transition (EMT) during invasion of intestinal tumours, but their role in normal intestinal homeostasis is unknown. Studies in breast and skin epithelia indicate that Snail proteins promote an undifferentiated state. Here, we demonstrate that conditional knockout of Snai1 in the intestinal epithelium results in apoptotic loss of crypt base columnar stem cells and bias towards differentiation of secretory lineages. In vitro organoid cultures derived from Snai1 conditional knockout mice also undergo apoptosis when Snai1 is deleted. Conversely, ectopic expression of Snai1 in the intestinal epithelium in vivo results in the expansion of the crypt base columnar cell pool and a decrease in secretory enteroendocrine and Paneth cells. Following conditional deletion of Snai1, the intestinal epithelium fails to produce a proliferative response following radiation‐induced damage indicating a fundamental requirement for Snai1 in epithelial regeneration. These results demonstrate that Snai1 is required for regulation of lineage choice, maintenance of CBC stem cells and regeneration of the intestinal epithelium following damage.
Journal of Visualized Experiments | 2014
Christian M. Nefzger; Sara Alaei; Anja S. Knaupp; Melissa L. Holmes; Jose M. Polo
Mature cells can be reprogrammed to a pluripotent state. These so called induced pluripotent stem (iPS) cells are able to give rise to all cell types of the body and consequently have vast potential for regenerative medicine applications. Traditionally iPS cells are generated by viral introduction of transcription factors Oct-4, Klf-4, Sox-2, and c-Myc (OKSM) into fibroblasts. However, reprogramming is an inefficient process with only 0.1-1% of cells reverting towards a pluripotent state, making it difficult to study the reprogramming mechanism. A proven methodology that has allowed the study of the reprogramming process is to separate the rare intermediates of the reaction from the refractory bulk population. In the case of mouse embryonic fibroblasts (MEFs), we and others have previously shown that reprogramming cells undergo a distinct series of changes in the expression profile of cell surface markers which can be used for the separation of these cells. During the early stages of OKSM expression successfully reprogramming cells lose fibroblast identity marker Thy-1.2 and up-regulate pluripotency associated marker Ssea-1. The final transition of a subset of Ssea-1 positive cells towards the pluripotent state is marked by the expression of Epcam during the late stages of reprogramming. Here we provide a detailed description of the methodology used to isolate reprogramming intermediates from cultures of reprogramming MEFs. In order to increase experimental reproducibility we use a reprogrammable mouse strain that has been engineered to express a transcriptional transactivator (m2rtTA) under control of the Rosa26 locus and OKSM under control of a doxycycline responsive promoter. Cells isolated from these mice are isogenic and express OKSM homogenously upon addition of doxycycline. We describe in detail the establishment of the reprogrammable mice, the derivation of MEFs, and the subsequent isolation of intermediates during reprogramming into iPS cells via fluorescent activated cells sorting (FACS).
Nature Methods | 2017
Xiaodong Liu; Christian M. Nefzger; Fernando J. Rossello; Joseph Chen; Anja S. Knaupp; Jaber Firas; Ethan Ford; Jahnvi Pflueger; Jacob M. Paynter; Hun S. Chy; Carmel O'Brien; Cheng Huang; Ketan Mishra; Margeaux Hodgson-Garms; Natasha Jansz; Sarah M Williams; Marnie E. Blewitt; Susan K. Nilsson; Ralf B. Schittenhelm; Andrew L. Laslett; Ryan Lister; Jose M. Polo
Recent reports on the characteristics of naive human pluripotent stem cells (hPSCs) obtained using independent methods differ. Naive hPSCs have been mainly derived by conversion from primed hPSCs or by direct derivation from human embryos rather than by somatic cell reprogramming. To provide an unbiased molecular and functional reference, we derived genetically matched naive hPSCs by direct reprogramming of fibroblasts and by primed-to-naive conversion using different naive conditions (NHSM, RSeT, 5iLAF and t2iLGöY). Our results show that hPSCs obtained in these different conditions display a spectrum of naive characteristics. Furthermore, our characterization identifies KLF4 as sufficient for conversion of primed hPSCs into naive t2iLGöY hPSCs, underscoring the role that reprogramming factors can play for the derivation of bona fide naive hPSCs.
Stem cell reports | 2016
Christian M. Nefzger; Thierry Jarde; Fernando J. Rossello; Katja Horvay; Anja S. Knaupp; David R. Powell; Joseph Chen; Helen E. Abud; Jose M. Polo
Summary The isolation of pure populations of mouse intestinal stem cells (ISCs) is essential to facilitate functional studies of tissue homeostasis, tissue regeneration, and intestinal diseases. However, the purification of ISCs has relied predominantly on the use of transgenic reporter alleles in mice. Here, we introduce a combinational cell surface marker-mediated strategy that allows the isolation of an ISC population transcriptionally and functionally equivalent to the gold standard Lgr5-GFP ISCs. Used on reporter-free mice, this strategy allows the isolation of functional, transcriptionally distinct ISCs uncompromised by Lgr5 haploinsufficiency.
Stem Cells | 2017
Carmel O'Brien; Hun S. Chy; Qi Zhou; Shiri Blumenfeld; Jack W. Lambshead; Xiaodong Liu; Joshua Kie; Bianca D. Capaldo; Tung-Liang Chung; Timothy E. Adams; Tram Phan; John D. Bentley; William J. McKinstry; Karen Oliva; Paul McMurrick; Yu-Chieh Wang; Fernando J. Rossello; Geoffrey J. Lindeman; Di Chen; Thierry Jarde; Amander T. Clark; Helen E. Abud; Jane E. Visvader; Christian M. Nefzger; Jose M. Polo; Jeanne F. Loring; Andrew L. Laslett
The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well‐characterized monoclonal antibodies (mAbs) detecting cell‐surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA‐160 and SSEA‐4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow‐derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626–640