Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Maueröder is active.

Publication


Featured researches published by Christian Maueröder.


Frontiers in Immunology | 2015

Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death

Abhishek D. Garg; Lorenzo Galluzzi; Lionel Apetoh; Thaïs Baert; Raymond B. Birge; José Manuel Bravo-San Pedro; Karine Breckpot; David Brough; Ricardo Chaurio; Mara Cirone; An Coosemans; Pierre G. Coulie; Dirk De Ruysscher; Luciana Dini; Peter de Witte; Aleksandra M. Dudek-Peric; Alberto Faggioni; Jitka Fucikova; Udo S. Gaipl; Jakub Golab; Marie Lise Gougeon; Michael R. Hamblin; Akseli Hemminki; Martin Herrmann; James W. Hodge; Oliver Kepp; Guido Kroemer; Dmitri V. Krysko; Walter G. Land; Frank Madeo

The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called “damage-associated molecular patterns” (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation.


Nature Communications | 2016

Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis

Moritz Leppkes; Christian Maueröder; Sebastian Hirth; Stefanie Nowecki; Claudia Günther; Ulrike Billmeier; Susanne Paulus; Mona Biermann; Luis E. Munoz; Markus Hoffmann; D Wildner; Andrew L. Croxford; Ari Waisman; Kerri A. Mowen; Dieter E. Jenne; Veit Krenn; Julia Mayerle; Markus M. Lerch; Georg Schett; Stefan Wirtz; Markus F. Neurath; Martin J. Herrmann; Christoph Becker

Ductal occlusion has been postulated to precipitate focal pancreatic inflammation, while the nature of the primary occluding agents has remained elusive. Neutrophils make use of histone citrullination by peptidyl arginine deiminase-4 (PADI4) in contact to particulate agents to extrude decondensed chromatin as neutrophil extracellular traps (NETs). In high cellular density, NETs form macroscopically visible aggregates. Here we show that such aggregates form inside pancreatic ducts in humans and mice occluding pancreatic ducts and thereby driving pancreatic inflammation. Experimental models indicate that PADI4 is critical for intraductal aggregate formation and that PADI4-deficiency abrogates disease progression. Mechanistically, we identify the pancreatic juice as a strong instigator of neutrophil chromatin extrusion. Characteristic single components of pancreatic juice, such as bicarbonate ions and calcium carbonate crystals, induce aggregated NET formation. Ductal occlusion by aggregated NETs emerges as a pathomechanism with relevance in a plethora of inflammatory conditions involving secretory ducts.


Proceedings of the National Academy of Sciences of the United States of America | 2014

An outer membrane channel protein of Mycobacterium tuberculosis with exotoxin activity

Olga Danilchanka; Jim Sun; Mikhail Pavlenok; Christian Maueröder; Alexander Speer; Axel Siroy; Joeli Marrero; Carolina Trujillo; David L. Mayhew; Kathryn S. Doornbos; Luis E. Munoz; Martin Herrmann; Sabine Ehrt; Christian Berens; Michael Niederweis

Significance The mechanisms that enable Mycobacterium tuberculosis, the causative agent of tuberculosis, to resist drug treatment and survive the immune response are poorly understood. In this study we discovered that M. tuberculosis produces the protein channel protein with necrosis-inducing toxin (CpnT), which forms a channel in the outer membrane and releases a toxic domain into the extracellular milieu. This toxin has no similarity to known bacterial toxins and kills eukaryotic cells by necrosis, suggesting that it is required for escape of M. tuberculosis from macrophages and for dissemination. The channel domain of CpnT is used for uptake of nutrients across the outer membrane. Taken together, CpnT is a protein with functions in two fundamental processes in M. tuberculosis physiology: nutrient acquisition and control of host cell death. The ability to control the timing and mode of host cell death plays a pivotal role in microbial infections. Many bacteria use toxins to kill host cells and evade immune responses. Such toxins are unknown in Mycobacterium tuberculosis. Virulent M. tuberculosis strains induce necrotic cell death in macrophages by an obscure molecular mechanism. Here we show that the M. tuberculosis protein Rv3903c (channel protein with necrosis-inducing toxin, CpnT) consists of an N-terminal channel domain that is used for uptake of nutrients across the outer membrane and a secreted toxic C-terminal domain. Infection experiments revealed that CpnT is required for survival and cytotoxicity of M. tuberculosis in macrophages. Furthermore, we demonstrate that the C-terminal domain of CpnT causes necrotic cell death in eukaryotic cells. Thus, CpnT has a dual function in uptake of nutrients and induction of host cell death by M. tuberculosis.


Expert Review of Clinical Immunology | 2014

The role of dead cell clearance in the etiology and pathogenesis of systemic lupus erythematosus: dendritic cells as potential targets

Mona Hc Biermann; Susan Veissi; Christian Maueröder; Ricardo Chaurio; Christian Berens; Martin J. Herrmann; Luis E. Munoz

Overwhelming apoptosis combined with a deficiency in clearing apoptotic cells is thought to be an important etiopathogenic event in the autoimmune disease systemic lupus erythematosus (SLE). Lazy macrophages, complement or DNase I deficiency as well as insufficient natural IgM might be important factors leading to such a clearance deficiency. A defective clearance of apoptotic cells leads to the activation and maturation of plasmacytoid and myeloid dendritic cells (DCs) by material derived from secondary necrotic cells carrying modified autoantigens. This results in the presentation of autoantigens to autoreactive T and B cells in an immunogenic manner, thereby leading to autoantibody production, chronic inflammation and severe tissue damage. Since DC activation and IFN-α production by plasmacytoid dendritic cells play a critical role in the course of SLE pathogenesis, therapeutic intervention to end this vicious cycle might be a promising approach for treating the disease.


Journal of Inflammation Research | 2015

Inflammatory etiopathogenesis of systemic lupus erythematosus: an update

Malgorzata Justyna Podolska; Mona Hc Biermann; Christian Maueröder; Jonas Hahn; Martin J. Herrmann

The immune system struggles every day between responding to foreign antigens and tolerating self-antigens to delicately maintain tissue homeostasis. If self-tolerance is broken, the development of autoimmunity can be the consequence, as it is in the case of the chronic inflammatory autoimmune disease systemic lupus erythematosus (SLE). SLE is considered to be a multifactorial disease comprising various processes and cell types that act abnormally and in a harmful way. Oxidative stress, infections, or, in general, tissue injury are accompanied by massive cellular demise. Several processes such as apoptosis, necrosis, or NETosis (formation of Neutrophil Extracellular Traps [NETs]) may occur alone or in combination. If clearance of dead cells is insufficient, cellular debris may accumulate and trigger inflammation and leakage of cytoplasmic and nuclear autoantigens like ribonucleoproteins, DNA, or histones. Inadequate removal of cellular remnants in the germinal centers of secondary lymphoid organs may result in the presentation of autoantigens by follicular dendritic cells to autoreactive B cells that had been generated by chance during the process of somatic hypermutation (loss of peripheral tolerance). The improper exposure of nuclear autoantigens in this delicate location is consequently prone to break self-tolerance to nuclear autoantigens. Indeed, the germline variants of autoantibodies often do not show autoreactivity. The subsequent production of autoantibodies plays a critical role in the development of the complex immunological disorder fostering SLE. Immune complexes composed of cell-derived autoantigens and autoantibodies are formed and get deposited in various tissues, such as the kidney, leading to severe organ damage. Alternatively, they may also be formed in situ by binding to planted antigens of circulating autoantibodies. Here, we review current knowledge about the etiopathogenesis of SLE including the involvement of different types of cell death, serving as the potential source of autoantigens, and impaired clearance of cell remnants, causing accumulation of cellular debris.


Autoimmunity | 2013

Colourful death: Six-parameter classification of cell death by flow cytometry—Dead cells tell tales

Luis E. Munoz; Christian Maueröder; Ricardo Chaurio; Christian Berens; Martin Herrmann; Christina Janko

The response of the immune system against dying and dead cells strongly depends on the cell death phenotype. Beside other forms of cell death, two clearly distinct populations, early apoptotic and secondary necrotic cells, have been shown to induce anti-inflammation/tolerance and inflammation/immune priming, respectively. Cytofluorometry is a powerful technique to detect morphological and phenotypical changes occurring during cell death. Here, we describe a new technique using AnnexinA5, propidiumiodide, DiIC1(5) and Hoechst 33342 to sub-classify populations of apoptotic and/or necrotic cells. The method allows the fast and reliable identification of several different phases and pathways of cell death by analysing the following cell death associated changes in a single tube: cellular granularity and shrinkage, phosphatidylserine exposure, ion selectivity of the plasma membrane, mitochondrial membrane potential, and DNA content. The clear characterisation of cell death is of major importance for instance in immunization studies, in experimental therapeutic settings, and in the exploration of cell-death associated diseases. It also enables the analysis of immunological properties of distinct populations of dying cells and the pathways involved in this process.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation

Luis E. Munoz; Rostyslav Bilyy; Mona Biermann; Deborah Kienhöfer; Christian Maueröder; Jonas Hahn; Jan M. Brauner; Daniela Weidner; Jin Chen; Marina Scharin-Mehlmann; Christina Janko; Ralf P. Friedrich; Dirk Mielenz; Tetiana Dumych; Maxim D. Lootsik; Christine Schauer; Georg Schett; Markus Hoffmann; Yi Zhao; Martin Herrmann

Significance The current widespread exposure of humans to natural as well as man-made nanomaterials due to the deployment of nanoparticles (NPs) as food additives, as vaccine- or drug-delivery vehicles, and in diagnostic procedures encourages the evaluation of their interaction with the innate immune system. Understanding how organisms cope with hydrophobic and chemically inert particulate matter, which is excluded from metabolic processing, is of major importance for interpreting the responses associated with the use of NPs in the biosphere. The containment of NPs within neutrophil-derived aggregates locally orchestrates the resolution of inflammation. Overriding this mechanism bears the risk of inducing chronic inflammation and causing tissue damage. The critical size for strong interaction of hydrophobic particles with phospholipid bilayers has been predicted to be 10 nm. Because of the wide spreading of nonpolar nanoparticles (NPs) in the environment, we aimed to reveal the ability of living organisms to entrap NPs via formation of neutrophil extracellular traps (NETs). Upon interaction with various cell types and tissues, 10- to 40-nm-sized NPs induce fast (<20 min) damage of plasma membranes and instability of the lysosomal compartment, leading to the immediate formation of NETs. In contrast, particles sized 100–1,000 nm behaved rather inertly. Resulting NET formation (NETosis) was accompanied by an inflammatory reaction intrinsically endowed with its own resolution, demonstrated in lungs and air pouches of mice. Persistence of small NPs in joints caused unremitting arthritis and bone remodeling. Small NPs coinjected with antigen exerted adjuvant-like activity. This report demonstrates a cellular mechanism that explains how small NPs activate the NETosis pathway and drive their entrapping and resolution of the initial inflammatory response.


Autoimmunity | 2013

UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice

Ricardo Chaurio; Christina Janko; Christine Schorn; Christian Maueröder; Rostyslav Bilyy; Udo S. Gaipl; Georg Schett; Christian Berens; Benjamin Frey; Luis E. Munoz

The presence of a solid tumor is the result of a complex balance between rejection, tolerance and regeneration in which the interactions of tumor cells with cells of the host immune system contribute strongly to the final outcome. Here we report on a model where lethally UVB-irradiated cells cause accelerated growth of viable tumor cells in vitro and in allogeneic immune competent mice. UVB-irradiated tumor cells alone did not form tumors and failed to induce tolerance for a second challenge with the same allogeneic tumor. Our data show an important role for dying cells in promoting accelerated tumor cell growth of a small number of viable tumor cells in a large inoculum of UVB-irradiated tumor cells. This occurs when viable and dying/dead tumor cells are in close proximity, suggesting that mobile factors contribute to growth promotion. The anti-inflammatory and growth promoting properties of apoptotic cells are based on several independent effects. UVB-irradiated apoptotic cells directly release a growth promoting activity and clearance by macrophages of apoptotic cells is accompanied by the secretion of IL10, TGFß, and PGE2. Growth promotion is even observed with dying heterologous cells implying a conserved mechanism. Future experiments should focus on the effects of dying tumor cells generated in vivo on the outgrowth of surviving tumor cells which is prone to have implications for cancer therapy.


JCI insight | 2017

Experimental lupus is aggravated in mouse strains with impaired induction of neutrophil extracellular traps

Deborah Kienhöfer; Jonas Hahn; Julia Stoof; Janka Zsófia Csepregi; Christiane Reinwald; Vilma Urbonaviciute; Caroline Johnsson; Christian Maueröder; Malgorzata Justyna Podolska; Mona Biermann; Moritz Leppkes; Thomas Harrer; Malin Hultqvist; Peter Olofsson; Luis E. Munoz; Attila Mócsai; Martin J. Herrmann; Georg Schett; Rikard Holmdahl; Markus Hoffmann

Many effector mechanisms of neutrophils have been implicated in the pathogenesis of systemic lupus erythematosus (SLE). Neutrophil extracellular traps (NETs) have been assigned a particularly detrimental role. Here we investigated the functional impact of neutrophils and NETs on a mouse model of lupus triggered by intraperitoneal injection of the cell death-inducing alkane pristane. Pristane-induced lupus (PIL) was aggravated in 2 mouse strains with impaired induction of NET formation, i.e., NOX2-deficient (Ncf1-mutated) and peptidyl arginine deiminase 4-deficient (PAD4-deficient) mice, as seen from elevated levels of antinuclear autoantibodies (ANAs) and exacerbated glomerulonephritis. We observed a dramatically reduced ability to form pristane-induced NETs in vivo in both Ncf1-mutated and PAD4-deficient mice, accompanied by higher levels of inflammatory mediators in the peritoneum. Similarly, neutropenic Mcl-1ΔMyelo mice exhibited higher levels of ANAs, which indicates a regulatory function in lupus of NETs and neutrophils. Blood neutrophils from Ncf1-mutated and human individuals with SLE exhibited exuberant spontaneous NET formation. Treatment with specific chemical NOX2 activators induced NET formation and ameliorated PIL. Our findings suggest that aberrant NET is one of the factors promoting experimental lupus-like autoimmunity by uncontrolled release of inflammatory mediators.


Journal of Molecular Medicine | 2015

How neutrophil extracellular traps orchestrate the local immune response in gout

Christian Maueröder; Deborah Kienhöfer; Jonas Hahn; Christine Schauer; Bernhard Manger; Georg Schett; Martin Herrmann; Markus Hoffmann

Neutrophil granulocytes possess a large arsenal of pro-inflammatory substances and mechanisms that empower them to drive local acute immune reactions to invading microorganisms or endogenous inflammatory triggers. The use of this armory needs to be tightly controlled to avoid chronic inflammation and collateral tissue damage. In gout, inflammation arises from precipitation of uric acid in the form of needle-shaped monosodium urate crystals. Inflammasome activation by these crystals in local immune cells results in a rapid and dramatic recruitment of neutrophils. This neutrophil influx is accompanied by the infamously intense clinical symptoms of inflammation during an acute gout attack. Neutrophilic inflammation however is equipped with a built-in safeguard; activated neutrophils form neutrophil extracellular traps (NETs). At the very high neutrophil densities that occur at the site of inflammation, NETs build aggregates that densely pack the monosodium urate (MSU) crystals and trap and degrade pro-inflammatory mediators by inherent proteases. Local removal of cytokines and chemokines by aggregated NETs explains how acute inflammation can stop in the consistent presence of the inflammatory trigger. Aggregated NETs resemble early stages of the typical large MSU deposits that constitute the pathognomonic structures of gout, tophi. Although tophi contribute to muscosceletal damage and mortality in patients with chronic gout, they can therefore be considered as a payoff that is necessary to silence the intense inflammatory response during acute gout.

Collaboration


Dive into the Christian Maueröder's collaboration.

Top Co-Authors

Avatar

Luis E. Munoz

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Georg Schett

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Martin Herrmann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Ricardo Chaurio

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Christian Berens

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Jonas Hahn

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Markus Hoffmann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mona Biermann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Christina Janko

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge