Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Moser is active.

Publication


Featured researches published by Christian Moser.


Expert Review of Vaccines | 2011

Influenza virosomes as a vaccine adjuvant and carrier system

Christian Moser; Mario Amacker; Rinaldo Zurbriggen

The basic concept of virosomes is the controlled in vitro assembly of virus-like particles from purified components. The first generation of influenza virosomes developed two decades ago is successfully applied in licensed vaccines, providing a solid clinical safety and efficacy track record for the technology. In the meantime, a second generation of influenza virosomes has evolved as a carrier and adjuvant system, which is currently applied in preclinical and clinical stage vaccine candidates targeting various prophylactic and therapeutic indications. The inclusion of additional components to optimize particle assembly, to stabilize the formulations, or to enhance the immunostimulatory properties have further improved and broadened the applicability of the platform.


Expert Review of Vaccines | 2007

Influenza virosomes as a combined vaccine carrier and adjuvant system for prophylactic and therapeutic immunizations

Christian Moser; Mario Amacker; Andreas R. Kammer; Silvia Rasi; Nicole Westerfeld; Rinaldo Zurbriggen

Influenza virosomes are an efficient antigen carrier and adjuvant system that are approved for the use in human vaccines. Structurally, virosomes are spherical vesicles of approximately 150 nm in diameter, composed of a lipid membrane with integrated envelope proteins derived from influenza virus, predominantly hemagglutinin. The particle structure, together with the functions of hemagglutinin – receptor binding, pH-dependent fusion activity and immunostimulation – is responsible for the adjuvant effect of virosomes. In contrast to most other virus-like particles, virosomes are semisynthetic particles reconstituted in vitro from lipids and from virus-derived proteins. The production process has proven to be robust at industrial scale and fully compatible with Good Manufacturing Practice guidelines. At the same time, the formulation procedure is sufficiently flexible to allow modifications of the composition and structure for the intended use, including the positioning of the antigens of interest.


Vaccine | 2012

A virosomal vaccine against candidal vaginitis: Immunogenicity, efficacy and safety profile in animal models

Flavia De Bernardis; Mario Amacker; Silvia Arancia; Silvia Sandini; Christel Gremion; Rinaldo Zurbriggen; Christian Moser; Antonio Cassone

A novel vaccine (PEV7) consisting of a truncated, recombinant aspartyl proteinase-2 of Candida albicans incorporated into influenza virosomes was studied. This vaccine candidate generated a potent serum antibody response in mouse and rat following intramuscular immunization. Anti-Sap2 IgG and IgA were also detected in the vaginal fluid of rats following intravaginal or intramuscular plus intravaginal administration. In a rat model of candidal vaginitis, PEV7 induced significant, long-lasting, likely antibody-mediated, protection following intravaginal route of immunization. PEV7 was also found to be safe in a repeated-dose toxicological study in rats. Overall, these data provide a sound basis to envisage the clinical development of this new candidate vaccine against candidal vaginitis.


Mbio | 2015

Secretory Aspartyl Proteinases Cause Vaginitis and Can Mediate Vaginitis Caused by Candida albicans in Mice

Eva Pericolini; Elena Gabrielli; Mario Amacker; Lydia Kasper; Elena Roselletti; Eugenio Luciano; Samuele Sabbatini; Matthias D. Kaeser; Christian Moser; Bernhard Hube; Anna Vecchiarelli; Antonio Cassone

ABSTRACT Vaginal inflammation (vaginitis) is the most common disease caused by the human-pathogenic fungus Candida albicans. Secretory aspartyl proteinases (Sap) are major virulence traits of C. albicans that have been suggested to play a role in vaginitis. To dissect the mechanisms by which Sap play this role, Sap2, a dominantly expressed member of the Sap family and a putative constituent of an anti-Candida vaccine, was used. Injection of full-length Sap2 into the mouse vagina caused local neutrophil influx and accumulation of the inflammasome-dependent interleukin-1β (IL-1β) but not of inflammasome-independent tumor necrosis factor alpha. Sap2 could be replaced by other Sap, while no inflammation was induced by the vaccine antigen, the N-terminal-truncated, enzymatically inactive tSap2. Anti-Sap2 antibodies, in particular Fab from a human combinatorial antibody library, inhibited or abolished the inflammatory response, provided the antibodies were able, like the Sap inhibitor Pepstatin A, to inhibit Sap enzyme activity. The same antibodies and Pepstatin A also inhibited neutrophil influx and cytokine production stimulated by C. albicans intravaginal injection, and a mutant strain lacking SAP1, SAP2, and SAP3 was unable to cause vaginal inflammation. Sap2 induced expression of activated caspase-1 in murine and human vaginal epithelial cells. Caspase-1 inhibition downregulated IL-1β and IL-18 production by vaginal epithelial cells, and blockade of the IL-1β receptor strongly reduced neutrophil influx. Overall, the data suggest that some Sap, particularly Sap2, are proinflammatory proteins in vivo and can mediate the inflammasome-dependent, acute inflammatory response of vaginal epithelial cells to C. albicans. These findings support the notion that vaccine-induced or passively administered anti-Sap antibodies could contribute to control vaginitis. IMPORTANCE Candidal vaginitis is an acute inflammatory disease that affects many women of fertile age, with no definitive cure and, in its recurrent forms, causing true devastation of quality of life. Unraveling the fungal factors causing inflammation is important to be able to devise novel tools to fight the disease. In an experimental murine model, we have discovered that aspartyl proteinases, particularly Sap2, may cause the same inflammatory signs of vaginitis caused by the fungus and that anti-Sap antibodies and the protease inhibitor Pepstatin A almost equally inhibit Sap- and C. albicans-induced inflammation. Sap-induced vaginitis is an early event during vaginal infection, is uncoupled from fungal growth, and requires Sap and caspase-1 enzymatic activities to occur, suggesting that Sap or products of Sap activity activate an inflammasome sensor of epithelial cells. Our data support the notion that anti-Sap antibodies could help control the essence of candidal vaginitis, i.e., the inflammatory response. Candidal vaginitis is an acute inflammatory disease that affects many women of fertile age, with no definitive cure and, in its recurrent forms, causing true devastation of quality of life. Unraveling the fungal factors causing inflammation is important to be able to devise novel tools to fight the disease. In an experimental murine model, we have discovered that aspartyl proteinases, particularly Sap2, may cause the same inflammatory signs of vaginitis caused by the fungus and that anti-Sap antibodies and the protease inhibitor Pepstatin A almost equally inhibit Sap- and C. albicans-induced inflammation. Sap-induced vaginitis is an early event during vaginal infection, is uncoupled from fungal growth, and requires Sap and caspase-1 enzymatic activities to occur, suggesting that Sap or products of Sap activity activate an inflammasome sensor of epithelial cells. Our data support the notion that anti-Sap antibodies could help control the essence of candidal vaginitis, i.e., the inflammatory response.


Molecular Pharmaceutics | 2013

Recent advances in mucosal immunization using virus-like particles.

Gaëlle Vacher; Matthias D. Kaeser; Christian Moser; Robert Gurny; Gerrit Borchard

Mucosal immunization offers the promises of eliciting a systemic and mucosal immune response, as well as enhanced patient compliance. Mucosal vaccination using defined antigens such as proteins and peptides requires delivery systems that combine good safety profiles with strong immunogenicity, which may be provided by virus-like particles (VLP). VLP are assembled from viral structural proteins and thus are devoid of any genetic material. They excel by mimicking natural pathogens, therefore providing antigen-protecting particulate nature, inherent immune-cell stimulatory mechanisms, and tissue-specific targeting depending on their parental virus. Nevertheless, despite of promising preclinical results, VLP remain rarely investigated in clinical studies. This review is intended to give an overview of obstacles and promises of VLP-based mucosal immunization as well as to identify strategies to further improve VLP while maintaining a good safety and tolerability profile.


PLOS ONE | 2016

A Triple Co-Culture Model of the Human Respiratory Tract to Study Immune-Modulatory Effects of Liposomes and Virosomes

Rebecca Blom; Silvia T Erni; Kristína Krempaská; Olivier Schaerer; R. Maarten van Dijk; Mario Amacker; Christian Moser; Sean Hall; Christophe von Garnier; Fabian Blank

The respiratory tract with its ease of access, vast surface area and dense network of antigen-presenting cells (APCs) represents an ideal target for immune-modulation. Bio-mimetic nanocarriers such as virosomes may provide immunomodulatory properties to treat diseases such as allergic asthma. In our study we employed a triple co-culture model of epithelial cells, macrophages and dendritic cells to simulate the human airway barrier. The epithelial cell line 16HBE was grown on inserts and supplemented with human blood monocyte-derived macrophages (MDMs) and dendritic cells (MDDCs) for exposure to influenza virosomes and liposomes. Additionally, primary human nasal epithelial cells (PHNEC) and EpCAM+ epithelial progenitor cell mono-cultures were utilized to simulate epithelium from large and smaller airways, respectively. To assess particle uptake and phenotype change, cell cultures were analyzed by flow cytometry and pro-inflammatory cytokine concentrations were measured by ELISA. All cell types internalized virosomes more efficiently than liposomes in both mono- and co-cultures. APCs like MDMs and MDDCs showed the highest uptake capacity. Virosome and liposome treatment caused a moderate degree of activation in MDDCs from mono-cultures and induced an increased cytokine production in co-cultures. In epithelial cells, virosome uptake was increased compared to liposomes in both mono- and co-cultures with EpCAM+ epithelial progenitor cells showing highest uptake capacity. In conclusion, all cell types successfully internalized both nanocarriers with virosomes being taken up by a higher proportion of cells and at a higher rate inducing limited activation of MDDCs. Thus virosomes may represent ideal carrier antigen systems to modulate mucosal immune responses in the respiratory tract without causing excessive inflammatory changes.


Archive | 2013

Influenza Virosomes as Antigen Delivery System

Christian Moser; Mario Amacker

Over 15 years of clinical experience with vaccines based on Influenza virosomes has generated a considerable track record, featuring an excellent safety and tolerability profile as well as convincing immunogenicity and efficacy data. In the past decade, a second generation of Influenza virosomes has been developed and validated as a versatile, standalone carrier, and adjuvant system for heterologous subunit antigens.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

Virosome-bound antigen enhances DC-dependent specific CD4+ T cell stimulation, inducing a Th1 and Treg profile in vitro

Rebecca Blom; Mario Amacker; Christian Moser; R. Maarten van Dijk; Raffaela Bonetti; Emilie Seydoux; Sean Hall; Christophe von Garnier; Fabian Blank

There is considerable interest to develop antigen-carriers for immune-modulatory clinical applications, but insufficient information is available on their effects on antigen-presenting cells. We employed virosomes coupled to ovalbumin (OVA) to study their interaction with murine bone marrow-derived dendritic cells (BMDCs) and modulation of downstream T cell responses. BMDCs were treated in vitro with virosomes or liposomes prior to determining BMDC phenotype, viability, and intracellular trafficking. Antigen-specific CD4+ T cell activation was measured by co-culture of BMDCs with DO11.10 CD4+ T cells. Compared to liposomes, virosomes were rapidly taken up. Neither nanocarrier type affected BMDC viability, nor did a moderate degree of activation differ for markers such as CD40, CD80, CD86. Virosome uptake occurred via clathrin-mediated endocytosis and phagocytosis, with co-localization in late endosomes. Only BMDCs treated with OVA-coupled virosomes induced enhanced OVA-specific CD4+ T cell proliferation. Antigen-coupled virosomes are endowed with an intrinsic ability to modulate DC-dependent adaptive immune responses.


Frontiers in Immunology | 2017

Pulmonary Delivery of Virosome-Bound Antigen Enhances Antigen-Specific CD4+ T Cell Proliferation Compared to Liposome-Bound or Soluble Antigen

Rebecca Blom; Mario Amacker; R. Maarten van Dijk; Christian Moser; Philip A. Stumbles; Fabian Blank; Christophe von Garnier

Pulmonary administration of biomimetic nanoparticles loaded with antigen may represent an effective strategy to directly modulate adaptive immune responses in the respiratory tract. Depending on the design, virosomes may not only serve as biomimetic antigen carriers but are also endowed with intrinsic immune-stimulatory properties. We designed fluorescently labeled influenza-derived virosomes and liposome controls coupled to the model antigen ovalbumin to investigate uptake, phenotype changes, and antigen processing by antigen-presenting cells exposed to such particles in different respiratory tract compartments. Both virosomes and liposomes were captured by pulmonary macrophages and dendritic cells alike and induced activation in particle-bearing cells by upregulation of costimulatory markers such as CD40, CD80, CD86, PD-L1, PD-L2, and ICOS-L. Though antigen processing and accumulation of both coupled and soluble antigen was similar between virosomes and liposomes, only ovalbumin-coupled virosomes generated a strong antigen-specific CD4+ T cell proliferation. Pulmonary administrated antigen-coupled virosomes therefore effectively induced adaptive immune responses and may be utilized in novel preventive or therapeutic approaches in the respiratory tract.


Archive | 2008

Virosomes Comprising Hemagglutinin Derived from an Influenza Virus Produced in a Cell Line, Compositions, Methods of Manufacturing, Use Thereof

Rinaldo Zurbriggen; Christian Moser; Silvia Rasi; Andreas R. Kammer; Mario Amacker; Nicole Westerfeld

Collaboration


Dive into the Christian Moser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Rasi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge