Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian P. Gray is active.

Publication


Featured researches published by Christian P. Gray.


Journal of Immunology | 2000

Differential Localization and Regulation of Death and Decoy Receptors for TNF-Related Apoptosis-Inducing Ligand (TRAIL) in Human Melanoma Cells

Xu Dong Zhang; Agustin V. Franco; Tam Nguyen; Christian P. Gray; Peter Hersey

Induction of apoptosis in cells by TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, is believed to be regulated by expression of two death-inducing and two inhibitory (decoy) receptors on the cell surface. In previous studies we found no correlation between expression of decoy receptors and susceptibility of human melanoma cells to TRAIL-induced apoptosis. In view of this, we studied the localization of the receptors in melanoma cells by confocal microscopy to better understand their function. We show that the death receptors TRAIL-R1 and R2 are located in the trans-Golgi network, whereas the inhibitory receptors TRAIL-R3 and -R4 are located in the nucleus. After exposure to TRAIL, TRAIL-R1 and -R2 are internalized into endosomes, whereas TRAIL-R3 and -R4 undergo relocation from the nucleus to the cytoplasm and cell membranes. This movement of decoy receptors was dependent on signals from TRAIL-R1 and -R2, as shown by blocking experiments with Abs to TRAIL-R1 and -R2. The location of TRAIL-R1, -R3, and -R4 in melanoma cells transfected with cDNA for these receptors was similar to that in nontransfected cells. Transfection of TRAIL-R3 and -R4 increased resistance of the melanoma lines to TRAIL-induced apoptosis even in melanoma lines that naturally expressed these receptors. These results indicate that abnormalities in “decoy” receptor location or function may contribute to sensitivity of melanoma to TRAIL-induced apoptosis and suggest that further studies are needed on the functional significance of their nuclear location and TRAIL-induced movement within cells.


BMC Veterinary Research | 2008

Identification of immune genes and proteins involved in the response of bovine mammary tissue to Staphylococcus aureus infection

Ylva Strandberg Lutzow; Laurelea Donaldson; Christian P. Gray; Tony Vuocolo; Roger D. Pearson; Antonio Reverter; Keren Byrne; Paul A. Sheehy; R.G. Windon; Ross L. Tellam

BackgroundMastitis in dairy cattle results from infection of mammary tissue by a range of micro-organisms but principally coliform bacteria and Gram positive bacteria such as Staphylococcus aureus. The former species are often acquired by environmental contamination while S. aureus is particularly problematic due to its resistance to antibiotic treatments and ability to reside within mammary tissue in a chronic, subclinical state. The transcriptional responses within bovine mammary epithelial tissue subjected to intramammary challenge with S. aureus are poorly characterised, particularly at the earliest stages of infection. Moreover, the effect of infection on the presence of bioactive innate immune proteins in milk is also unclear. The nature of these responses may determine the susceptibility of the tissue and its ability to resolve the infection.ResultsTranscriptional profiling was employed to measure changes in gene expression occurring in bovine mammary tissues sampled from three dairy cows after brief and graded intramammary challenges with S. aureus. These limited challenges had no significant effect on the expression pattern of the gene encoding β-casein but caused coordinated up-regulation of a number of cytokines and chemokines involved in pro-inflammatory responses. In addition, the enhanced expression of two genes, S100 calcium-binding protein A12 (S100A12) and Pentraxin-3 (PTX3) corresponded with significantly increased levels of their proteins in milk from infected udders. Both genes were shown to be expressed by mammary epithelial cells grown in culture after stimulation with lipopolysaccharide. There was also a strong correlation between somatic cell count, a widely used measure of mastitis, and the level of S100A12 in milk from a herd of dairy cows. Recombinant S100A12 inhibited growth of Escherichia coli in vitro and recombinant PTX3 bound to E. coli as well as C1q, a subunit of the first component of the complement cascade.ConclusionThe transcriptional responses in infected bovine mammary tissue, even at low doses of bacteria and short periods of infection, probably reflect the combined contributions of gene expression changes resulting from the activation of mammary epithelial cells and infiltrating immune cells. The secretion of a number of proinflammatory cytokines and chemokines from mammary epithelial cells stimulated by the bacteria serves to trigger the recruitment and activation of neutrophils in mammary tissue. The presence of S100A12 and PTX3 in milk from infected udder quarters may increase the anti-bacterial properties of milk thereby helping to resolve the mammary tissue infection as well as potentially contributing to the maturation of the newborn calf epithelium and establishment of the newborn gut microbial population.


Veterinary Immunology and Immunopathology | 1997

Antibody responses and protective immunity to recombinant vaccinia virus-expressed bluetongue virus antigens.

Zelia Lobato; Barbara E.H. Coupar; Christian P. Gray; Ross A. Lunt; Marion E. Andrew

The role of individual viral proteins in the immune response to bluetongue virus (BTV) is not clearly understood. To investigate the contributions of the outer capsid proteins, VP2 and VP5, and possible interactions between them, these proteins were expressed from recombinant vaccinia viruses either as individual proteins or together in double recombinants, or with the core protein VP7 in a triple recombinant. Comparison of the immunogenicity of the vaccinia expressed proteins with BTV expressed proteins was carried out by inoculation of rabbits and sheep. Each of the recombinants was capable of stimulating an anti-BTV antibody response, although there was a wide range in the level of response between animals and species. Vaccinia-expressed VP2 was poorly immunogenic, particularly in rabbits. VP5, on the whole, stimulated higher ELISA titers in rabbits and sheep and in some animals in both species was able to stimulate virus neutralizing antibodies. When the protective efficacy of VP2 and VP5 was tested in sheep, vaccinia-expressed VP2, VP5 and VP2 + VP5 were protective, with the most consistent protection being in groups immunized with both proteins.


International Journal of Cancer | 2001

Immunosuppressive effects of melanoma-derived heavy-chain ferritin are dependent on stimulation of IL-10 production

Christian P. Gray; Agustin V. Franco; Paolo Arosio; Peter Hersey

Cultured melanoma cells release soluble factors that influence immune responses. Screening of a cDNA library with anti‐sera from a melanoma patient identified an immunoreactive plaque, which encoded heavy‐chain ferritin (H‐ferritin). Previous studies have drawn attention to the immunosuppressive effects of this molecule and prompted further studies on its biochemical and functional properties in human melanoma. These studies demonstrated, firstly, that H‐ferritin appeared to be secreted by melanoma cells, as shown by immunoprecipitation of a 21.5 kDa band from supernatants. It was also detected in extracts of melanoma cells by Western blotting as 43 and 64 kDa dimers and trimers of the 21.5 kDa fraction. Secondly, flow‐cytometric analysis of H‐ and light‐chain ferritin (L‐ferritin) expression on melanoma showed a wide variation in L‐ferritin expression and consequently of the ratio of H‐ to L‐ferritin expression. Suppression of mitogenic responses of lymphocytes to anti‐CD3 showed a correlation with the ratio of H‐ to L‐ferritin in the supernatants and was specific for H‐ferritin, as shown by inhibition studies with a monoclonal antibody (MAb) against H‐ferritin. Similar results were obtained with H‐ and L‐ferritin from other sources. Suppression of mitogenic responses of lymphocytes to anti‐CD3 by H‐ferritin was inhibited using a MAb against IL‐10, which suggested that the immunosuppressive effect of H‐ferritin was mediated by IL‐10. Assays of cytokine production from anti‐CD3–stimulated lymphocytes showed that H‐ferritin markedly increased production of IL‐10 and IFN‐γ and had only slight effects on IL‐2 and IL‐4 production. Our results suggest that melanoma cells may be a major source of H‐ferritin and that production of the latter may account for some of the immunosuppressive effects of melanoma.


Journal of Dairy Science | 2009

Bovine Muc1 is a highly polymorphic gene encoding an extensively glycosylated mucin that binds bacteria

Lillian Sando; Roger D. Pearson; Christian P. Gray; P. Parker; R. J. Hawken; Peter C. Thomson; J.R.S. Meadows; Kritaya Kongsuwan; Stuart C. Smith; Ross L. Tellam

The bovine Muc1 protein is synthesized by mammary epithelial cells and shed into milk as an integral component of the milk fat globule membrane; however, the structure and functions of this mucin, particularly in relation to lactation, are poorly defined. The objectives of this investigation were to investigate the Muc1 gene and protein structures in the context of lactation and to test the hypothesis that Muc1 has a role in innate immune defense. Polymerase chain reaction analysis of genomic DNA from 630 cattle revealed extensive polymorphism in the variable number of tandem repeats (VNTR) in the bovine Muc1 gene. Nine allelic variants spanning 7 to 23 VNTR units, each encoding 20 AA, were identified. Three alleles, containing 11, 14, and 16 VNTR units, respectively, were predominant. In addition, a polymorphism in one of the VNTR units has the potential to introduce a unique site for N-linked glycosylation. Statistical analysis indicated weak associations between the VNTR alleles and milk protein and fat percentages in a progeny-tested population of Holstein-Friesian dairy cattle. No association with somatic cell count could be demonstrated. Bovine Muc1 was purified from milk fat globule membranes and characterized. The protein was highly glycosylated, primarily with O-linked sialylated T-antigen [Neu5Ac(alpha2-3)-Gal(beta1-3)-GalNAcalpha1] and, to a lesser extent, with N-linked oligosaccharides, which together accounted for approximately 60% of the apparent mass of Muc1. Purified bovine Muc1 directly bound fluorescently labeled Escherichia coli BioParticles (Invitrogen, Mount Waverley, Australia) and inhibited their binding to bovine mammary epithelial cells grown in vitro. It was also demonstrated that the expression of Muc1 mRNA in bovine mammary epithelial cells was markedly upregulated by lipopolysaccharide. Muc1 may be a pattern recognition protein that has the capacity to sequester bacteria and prevent their attachment to epithelial surfaces by immobilizing and subsequently shedding Muc1-bound bacteria from the cell surface. It was concluded that bovine Muc1 is probably an inducible innate immune effector and an important component of the first line of defense against bacterial invasion of epithelial surfaces, particularly mammary epithelial surfaces and the neonatal gut.


Mucosal Immunology | 2014

Activation of memory Th17 cells by domain 4 pneumolysin in human nasopharynx-associated lymphoid tissue and its association with pneumococcal carriage.

Christian P. Gray; Muhammad Shamsher Ahmed; A. Mubarak; A V Kasbekar; S Derbyshire; Maxwell S. Mccormick; M K Mughal; Paul McNamara; Timothy J. Mitchell; Qibo Zhang

Pneumococcal carriage is common in children that may account for the high incidence of disease in this age group. Recent studies in animals suggest an important role for CD4+ T cells, T helper type 17 (Th17) cells in particular, in pneumococcal clearance. Whether this Th17-mediated mechanism operates in humans and what pneumococcal components activate Th17 are unknown. We investigated the ability of domain 4 pneumolysin (D4Ply) to activate CD4+ T cells including Th17 in human nasopharynx-associated lymphoid tissue (NALT) and peripheral blood. We show that D4Ply elicited a prominent CD4+ T-cell proliferative response. More importantly, D4Ply elicited a significant memory Th17 response in NALT, and a moderate response in peripheral blood mononuclear cells (PBMCs). This D4Ply-elicited memory Th17 response was more marked in carriage− than in carriage+ children in both NALT and PBMCs. In contrast, no difference was shown in D4Ply-induced Th1 response between the two groups. We also show D4Ply activated human monocytes and murine macrophages that was in part dependent on Toll-like receptor 4 (TLR-4). Our results support a protective role of Th17 against pneumococcal carriage in human nasopharynx, and identify a novel property of D4Ply to activate Th17 in NALT that may offer an attractive vaccine candidate in intranasal immunization against pneumococcal infection.


Australian Journal of Experimental Agriculture | 2005

Bovine mammary epithelial cells, initiators of innate immune responses to mastitis

Christian P. Gray; Ylva Strandberg; Laurelea Donaldson; Ross L. Tellam

Innate immunity plays a vital role in the protection of the bovine mammary gland against mastitis. Until recently, the migration of effector cells such as neutrophils and monocytes into the mammary gland was thought to provide the only defence against invading pathogens. However, mammary epithelial cells may also play an important role in the immune response, contributing to the innate defence of the mammary tissue through secretion of antimicrobial peptides and attraction of circulating immune effector cells. This paper reviews the innate immune pathways in mammary epithelial cells and examines their role in the initiation of an innate immune response to Gram-positive and Gram-negative bacteria.


Veterinary Parasitology | 2012

First report of a Trichinella papuae infection in a wild pig (Sus scrofa) from an Australian island in the Torres Strait region.

Leigh Cuttell; B. Cookson; L.A. Jackson; Christian P. Gray; Rebecca J. Traub

Multiple Trichinella species are reported from the Australasian region although mainland Australia has never confirmed an indigenous case of Trichinella infection in humans or animals. Wildlife surveys in high-risk regions are essential to truly determine the presence or absence of Trichinella, but in mainland Australia are largely lacking. In this study, a survey was conducted in wild pigs from mainland Australias Cape York Peninsula and Torres Strait region for the presence of Trichinella, given the proximity of a Trichinella papuae reservoir in nearby PNG. We report the detection of a Trichinella infection in a pig from an Australian island in the Torres Strait, a narrow waterway that separates the islands of New Guinea and continental Australia. The larvae were characterised as T. papuae (Kikori strain) by PCR and sequence analysis. No Trichinella parasites were found in any pigs from the Cape York Peninsula. These results highlight the link the Torres Strait may play in providing a passage for introduction of Trichinella parasites from the Australasian region to the Australian mainland.


Veterinary Parasitology | 2012

Real-time PCR as a surveillance tool for the detection of Trichinella infection in muscle samples from wildlife

Leigh Cuttell; Sean W. Corley; Christian P. Gray; Paul B. Vanderlinde; L.A. Jackson; Rebecca J. Traub

Trichinella nematodes are the causative agent of trichinellosis, a meat-borne zoonosis acquired by consuming undercooked, infected meat. Although most human infections are sourced from the domestic environment, the majority of Trichinella parasites circulate in the natural environment in carnivorous and scavenging wildlife. Surveillance using reliable and accurate diagnostic tools to detect Trichinella parasites in wildlife hosts is necessary to evaluate the prevalence and risk of transmission from wildlife to humans. Real-time PCR assays have previously been developed for the detection of European Trichinella species in commercial pork and wild fox muscle samples. We have expanded on the use of real-time PCR in Trichinella detection by developing an improved extraction method and SYBR green assay that detects all known Trichinella species in muscle samples from a greater variety of wildlife. We simulated low-level Trichinella infections in wild pig, fox, saltwater crocodile, wild cat and a native Australian marsupial using Trichinella pseudospiralis or Trichinella papuae ethanol-fixed larvae. Trichinella-specific primers targeted a conserved region of the small subunit of the ribosomal RNA and were tested for specificity against host and other parasite genomic DNAs. The analytical sensitivity of the assay was at least 100 fg using pure genomic T. pseudospiralis DNA serially diluted in water. The diagnostic sensitivity of the assay was evaluated by spiking 10 g of each host muscle with T. pseudospiralis or T. papuae larvae at representative infections of 1.0, 0.5 and 0.1 larvae per gram, and shown to detect larvae at the lowest infection rate. A field sample evaluation on naturally infected muscle samples of wild pigs and Tasmanian devils showed complete agreement with the EU reference artificial digestion method (k-value=1.00). Positive amplification of mouse tissue experimentally infected with T. spiralis indicated the assay could also be used on encapsulated species in situ. This real-time PCR assay offers an alternative highly specific and sensitive diagnostic method for use in Trichinella wildlife surveillance and could be adapted to wildlife hosts of any region.


Biopolymers | 2013

Anthelminthic activity of the cyclotides (kalata B1 and B2) against schistosome parasites

David Malagón; Bonnie Botterill; Darren J. Gray; Erica Lovas; Mary Duke; Christian P. Gray; Steven R. Kopp; Lyn M. Knott; Donald P McManus; Norelle L. Daly; Jason Mulvenna; David J. Craik; Malcolm K. Jones

The risk of reduced sensitivity of the human schistosomes to praziquantel has led to efforts to find new therapies. Here, the cyclotides kalata B1 (kB1), kalata B2 (kB2), MCoCC-1, and MCoTI-II, cyclic peptides extracted from plants and shown to be potent against nematodes and insects, were tested for antischistosome activity. In vitro assays showed that high concentrations (500-1000 μg/mL) of either kB1 or kB2 killed Schistosoma japonicum and Schistosoma mansoni adults within 5 min, whereas MCoTI-II and MCoCC-1 had no effect. Lethal concentrations to kill 50% of the population for kB2 was 15.5 ± 7.4 μg/mL at 1 h for male S. japonicum (Philippine strain). Males were more susceptible than females. kB2 showed higher antischistosome activity than kB1 and killing time was concentration-dependent. Mode of action studies revealed that kB1 and 2 lysed the tegument of adult worms. Lysis of myofibrils was not demonstrated, but longitudinal and radial muscle fibers were distorted, an observation consistent with strong coiling of the parasites after drug exposure. A single dose of kB2 administered either orally or intravenously, reduced worm burdens in S. japonicum-infected mice from 15% to 60%. However, treatment of S. mansoni-infected mice did not result in reduction in worm burdens. Our studies show that kB2 acts as a promising antischistosomal against Philippine S. japonicum, and it or other cyclotides may be developed further as general anthelminthics. With thousands of cyclotides predicted to occur in plants, and the amenability of these peptides to combinatorial variation, there is potential for their exploitation as wide-spectrum anthelminthics.

Collaboration


Dive into the Christian P. Gray's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross L. Tellam

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurelea Donaldson

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L.A. Jackson

Cooperative Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge