Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Paetz is active.

Publication


Featured researches published by Christian Paetz.


Plant Physiology | 2013

A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce

Almuth Hammerbacher; Axel Schmidt; Namita Wadke; Louwrance P. Wright; Bernd Schneider; Joerg Bohlmann; Willi A. Brand; Trevor M. Fenning; Jonathan Gershenzon; Christian Paetz

The bark beetle-vectored fungus Ceratocystis polonica degrades stilbenoid defense compounds produced by its conifer host. Norway spruce (Picea abies) forests suffer periodic fatal attacks by the bark beetle Ips typographus and its fungal associate, Ceratocystis polonica. Norway spruce protects itself against fungal and bark beetle invasion by the production of terpenoid resins, but it is unclear whether resins or other defenses are effective against the fungus. We investigated stilbenes, a group of phenolic compounds found in Norway spruce bark with a diaryl-ethene skeleton with known antifungal properties. During C. polonica infection, stilbene biosynthesis was up-regulated, as evidenced by elevated transcript levels of stilbene synthase genes. However, stilbene concentrations actually declined during infection, and this was due to fungal metabolism. C. polonica converted stilbenes to ring-opened, deglycosylated, and dimeric products. Chromatographic separation of C. polonica protein extracts confirmed that these metabolites arose from specific fungal enzyme activities. Comparison of C. polonica strains showed that rapid conversion of host phenolics is associated with higher virulence. C. polonica is so well adapted to its host’s chemical defenses that it is even able to use host phenolic compounds as its sole carbon source.


The Plant Cell | 2013

Gene coexpression analysis reveals a complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers

Jean-François Ginglinger; Benoît Boachon; René Höfer; Christian Paetz; Tobias G. Köllner; Raphaël Lugan; Jérôme Mutterer; M. Fischer; Pascaline Ullmann; Franziska Beran; P. Claudel; R. Baltenweck; Laurence Miesch; Francel Verstappen; Harro J. Bouwmeester; Michel Miesch; Bernd Schneider; Jonathan Gershenzon; J. Ehlting; Danièle Werck-Reichhart

This work characterizes two cytochrome P450s and two monoterpene synthases that are coexpressed in flowers and thus predicted to be involved in monoterpenoid metabolism. The results show that despite Arabidopsis thaliana being autogamous, its flowers exhibit extensive linalool metabolism. The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (−)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined.


Phytotherapy Research | 2011

Identification of spathulenol in Salvia mirzayanii and the immunomodulatory effects.

Akram Ziaei; Mohammad Ramezani; Louwrance P. Wright; Christian Paetz; Bernd Schneider; Zahra Amirghofran

The methanol extract of Salvia mirzayanii has shown an immunomodulatory effect on peripheral blood lymphocytes. Bioassay‐guided fractionation using a lymphocyte proliferation assay on Salvia mirzayanii was performed in order to purify and identify the active compounds. Fractionation of the methanol extract and purification of the components using normal column chromatography and preparative thin layer chromatography resulted in identification of the bioactive compound, spathulenol, with an immunoinhibitory effect. Identification of this compound was performed by 1D and 2D NMR methods and HRMS. Treatment of activated lymphocytes with a concentrated fraction containing 62% of spathulenol (SP) showed a decrease in the proliferation of lymphocytes with an IC50 of 85.4 ± 11.08 µg/mL. Flow cytometry analysis using annexin V and propidium iodide staining of the stimulated peripheral blood lymphocytes in the presence of SP demonstrated a dose dependent increase in the percentage of apoptotic cells (IC50; 77.2 ± 5.31 µg/mL). No significant increase in caspase 3 activity in a 20 h treatment of stimulated lymphocytes compared with the control was observed. In conclusion, this study identified the possible activity of spathulenol as one of the immunomodulatory compounds present in Salvia mirzayanii. SP showed the capacity to inhibit proliferation in the lymphocytes and to induce apoptosis in these cells possibly through a caspase‐3 independent pathway. Copyright


Molecular Ecology | 2014

The role of glucosinolates and the jasmonic acid pathway in resistance of Arabidopsis thaliana against molluscan herbivores

Kimberly L. Falk; Julia Kästner; Natacha Bodenhausen; Katharina Schramm; Christian Paetz; Daniel Giddings Vassão; Michael Reichelt; Dietrich von Knorre; Joy Bergelson; Matthias Erb; Jonathan Gershenzon; Stefan Meldau

Although slugs and snails play important roles in terrestrial ecosystems and cause considerable damage on a variety of crop plants, knowledge about the mechanisms of plant immunity to molluscs is limited. We found slugs to be natural herbivores of Arabidopsis thaliana and therefore investigated possible resistance mechanisms of this species against several molluscan herbivores. Treating wounded leaves with the mucus residue (‘slime trail’) of the Spanish slug Arion lusitanicus increased wound‐induced jasmonate levels, suggesting the presence of defence elicitors in the mucus. Plants deficient in jasmonate biosynthesis and signalling suffered more damage by molluscan herbivores in the laboratory and in the field, demonstrating that JA‐mediated defences protect A. thaliana against slugs and snails. Furthermore, experiments using A. thaliana mutants with altered levels of specific glucosinolate classes revealed the importance of aliphatic glucosinolates in defending leaves and reproductive structures against molluscs. The presence in mollusc faeces of known and novel metabolites arising from glutathione conjugation with glucosinolate hydrolysis products suggests that molluscan herbivores actively detoxify glucosinolates. Higher levels of aliphatic glucosinolates were found in plants during the night compared to the day, which correlated well with the nocturnal activity rhythms of slugs and snails. Our data highlight the function of well‐known antiherbivore defence pathways in resistance against slugs and snails and suggest an important role for the diurnal regulation of defence metabolites against nocturnal molluscan herbivores.


Plant Molecular Biology | 2009

Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation

Tanja Knill; Michael Reichelt; Christian Paetz; Jonathan Gershenzon; Stefan Binder

The last steps of the Leu biosynthetic pathway and the Met chain elongation cycle for glucosinolate formation share identical reaction types suggesting a close evolutionary relationship of these pathways. Both pathways involve the condensation of acetyl-CoA and a 2-oxo acid, isomerization of the resulting 2-malate derivative to form a 3-malate derivative, the oxidation-decarboxylation of the 3-malate derivative to give an elongated 2-oxo acid, and transamination to generate the corresponding amino acid. We have now analyzed the genes encoding the isomerization reaction, the second step of this sequence, in Arabidopsis thaliana. One gene encodes the large subunit and three encode small subunits of this enzyme, referred to as isopropylmalate isomerase (IPMI) with respect to the Leu pathway. Metabolic profiling of large subunit mutants revealed accumulation of intermediates of both Leu biosynthesis and Met chain elongation, and an altered composition of aliphatic glucosinolates demonstrating the function of this gene in both pathways. In contrast, the small subunits appear to be specialized to either Leu biosynthesis or Met chain elongation. Green fluorescent protein tagging experiments confirms the import of one of the IPMI small subunits into the chloroplast, the localization of the Met chain elongation pathway in these organelles. These results suggest the presence of different heterodimeric IPMIs in Arabidopsis chloroplasts with distinct substrate specificities for Leu or glucosinolate metabolism determined by the nature of the different small subunit.


Annals of Botany | 2013

Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth

Franziska Buch; Matthias Rott; Sandy Rottloff; Christian Paetz; Ines Hilke; Michael Raessler; Axel Mithöfer

BACKGROUND AND AIMS Carnivorous plants of the genus Nepenthes possess modified leaves that form pitfall traps in order to capture prey, mainly arthropods, to make additional nutrients available for the plant. These pitchers contain a digestive fluid due to the presence of hydrolytic enzymes. In this study, the composition of the digestive fluid was further analysed with regard to mineral nutrients and low molecular-weight compounds. A potential contribution of microbes to the composition of pitcher fluid was investigated. METHODS Fluids from closed pitchers were harvested and analysed for mineral nutrients using analytical techniques based on ion-chromatography and inductively coupled plasma-optical emission spectroscopy. Secondary metabolites were identified by a combination of LC-MS and NMR. The presence of bacteria in the pitcher fluid was investigated by PCR of 16S-rRNA genes. Growth analyses of bacteria and yeast were performed in vitro with harvested pitcher fluid and in vivo within pitchers with injected microbes. KEY RESULTS The pitcher fluid from closed pitchers was found to be primarily an approx. 25-mm KCl solution, which is free of bacteria and unsuitable for microbial growth probably due to the lack of essential mineral nutrients such as phosphate and inorganic nitrogen. The fluid also contained antimicrobial naphthoquinones, plumbagin and 7-methyl-juglone, and defensive proteins such as the thaumatin-like protein. Challenging with bacteria or yeast caused bactericide as well as fungistatic properties in the fluid. Our results reveal that Nepenthes pitcher fluids represent a dynamic system that is able to react to the presence of microbes. CONCLUSIONS The secreted liquid of closed and freshly opened Nepenthes pitchers is exclusively plant-derived. It is unsuitable to serve as an environment for microbial growth. Thus, Nepenthes plants can avoid and control, at least to some extent, the microbial colonization of their pitfall traps and, thereby, reduce the need to vie with microbes for the prey-derived nutrients.


Plant Physiology | 2014

Flavan-3-ols in Norway spruce: Biosynthesis, accumulation and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica

Almuth Hammerbacher; Christian Paetz; Louwrance P. Wright; Thilo C. Fischer; Joerg Bohlmann; Andrew J. Davis; Trevor M. Fenning; Jonathan Gershenzon; Axel Schmidt

Monomeric and polymeric flavan-3-ols are antifungal defense compounds in Norway spruce (Picea abies). Proanthocyanidins (PAs) are common polyphenolic polymers of plants found in foliage, fruit, bark, roots, rhizomes, and seed coats that consist of flavan-3-ol units such as 2,3-trans-(+)-catechin and 2,3-cis-(–)-epicatechin. Although the biosynthesis of flavan-3-ols has been studied in angiosperms, little is known about their biosynthesis and ecological roles in gymnosperms. In this study, the genes encoding leucoanthocyanidin reductase, a branch point enzyme involved in the biosynthesis of 2,3-trans-(+)-flavan-3-ols, were identified and functionally characterized in Norway spruce (Picea abies), the most widespread and economically important conifer in Europe. In addition, the accumulation of flavan-3-ols and PAs was investigated in Norway spruce saplings after wounding or inoculation with the fungal pathogen Ceratocystis polonica, which is vectored by bark beetles (Ips typographus) and is usually present during fatal beetle attacks. Monomeric and dimeric flavan-3-ols were analyzed by reverse-phase high-pressure liquid chromatography, while the size and subunit composition of larger PAs were characterized using a novel acid hydrolysis method and normal phase chromatography. Only flavan-3-ol monomers with 2,3-trans stereochemistry were detected in spruce bark; dimeric and larger PAs contained flavan-3-ols with both 2,3-trans and 2,3-cis stereochemistry. Levels of monomers as well as PAs with a higher degree of polymerization increased dramatically in spruce bark after infection by C. polonica. In accordance with their role in the biosynthesis of 2,3-trans-(+)-flavan-3-ols, transcript abundance of Norway spruce LEUCOANTHOCYANIDIN REDUCTASE genes also increased significantly during fungal infection. Bioassays with C. polonica revealed that the levels of 2,3-trans-(+)-catechin and PAs that are produced in the tree in response to fungal infection inhibit C. polonica growth and can therefore be considered chemical defense compounds.


The Plant Cell | 2015

CYP76C1 (Cytochrome P450)-Mediated Linalool Metabolism and the Formation of Volatile and Soluble Linalool Oxides in Arabidopsis Flowers: A Strategy for Defense against Floral Antagonists

Benoît Boachon; Robert R. Junker; Laurence Miesch; Jean-Etienne Bassard; René Höfer; Robin Caillieaudeaux; Dana E. Seidel; Agnès Lesot; Clément F. Heinrich; Jean-François Ginglinger; Lionel Allouche; Bruno Vincent; Dinar S.C. Wahyuni; Christian Paetz; Franziska Beran; Michel Miesch; Bernd Schneider; Kirsten A. Leiss; Danièle Werck-Reichhart

A cytochrome P450 in the CYP76 family modulates linalool emission and linalool oxide (including lilac compounds) formation in Arabidopsis, making flowers repellent rather than attractive to insects. The acyclic monoterpene alcohol linalool is one of the most frequently encountered volatile compounds in floral scents. Various linalool oxides are usually emitted along with linalool, some of which are cyclic, such as the furanoid lilac compounds. Recent work has revealed the coexistence of two flower-expressed linalool synthases that produce the (S)- or (R)-linalool enantiomers and the involvement of two P450 enzymes in the linalool oxidation in the flowers of Arabidopsis thaliana. Partially redundant enzymes may also contribute to floral linalool metabolism. Here, we provide evidence that CYP76C1 is a multifunctional enzyme that catalyzes a cascade of oxidation reactions and is the major linalool metabolizing oxygenase in Arabidopsis flowers. Based on the activity of the recombinant enzyme and mutant analyses, we demonstrate its prominent role in the formation of most of the linalool oxides identified in vivo, both as volatiles and soluble conjugated compounds, including 8-hydroxy, 8-oxo, and 8-COOH-linalool, as well as lilac aldehydes and alcohols. Analysis of insect behavior on CYP76C1 mutants and in response to linalool and its oxygenated derivatives demonstrates that CYP76C1-dependent modulation of linalool emission and production of linalool oxides contribute to reduced floral attraction and favor protection against visitors and pests.


Current Biology | 2014

Identity of a Tilapia Pheromone Released by Dominant Males that Primes Females for Reproduction

Tina Keller-Costa; Peter C. Hubbard; Christian Paetz; Yoko Nakamura; José P. Da Silva; Ana Rato; Eduardo N. Barata; Bernd Schneider; Adelino V. M. Canario

Knowledge of the chemical identity and role of urinary pheromones in fish is scarce, yet it is necessary in order to understand the integration of multiple senses in adaptive responses and the evolution of chemical communication [1]. In nature, Mozambique tilapia (Oreochromis mossambicus) males form hierarchies, and females mate preferentially with dominant territorial males, which they visit in aggregations or leks [2]. Dominant males have thicker urinary bladder muscular walls than subordinates or females and store large volumes of urine, which they release at increased frequency in the presence of subordinate males or preovulatory, but not postspawned, females [3-5]. Females exposed to dominant-male urine augment their release of the oocyte maturation-inducing steroid 17α,20β-dihydroxypregn-4-en-3-one (17,20β-P) [6]. Here we isolate and identify a male Mozambique tilapia urinary sex pheromone as two epimeric (20α- and 20β-) pregnanetriol 3-glucuronates. We show that both males and females have high olfactory sensitivity to the two steroids, which cross-adapt upon stimulation. Females exposed to both steroids show a rapid, 10-fold increase in production of 17,20β-P. Thus, the identified urinary steroids prime the female endocrine system to accelerate oocyte maturation and possibly promote spawning synchrony. Tilapia are globally important as a food source but are also invasive species, with devastating impact on local freshwater ecosystems [7, 8]. Identifying the chemical cues that mediate reproduction may lead to the development of tools for population control [9-11].


Phytochemistry | 2015

Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.)

Meret Huber; Daniella Triebwasser-Freese; Michael Reichelt; Sven Heiling; Christian Paetz; Jima N. Chandran; Stefan Bartram; Bernd Schneider; Jonathan Gershenzon; Matthias Erb

The secondary metabolites in the roots, leaves and flowers of the common dandelion (Taraxacum officinale agg.) have been studied in detail. However, little is known about the specific constituents of the plants highly specialized laticifer cells. Using a combination of liquid and gas chromatography, mass spectrometry and nuclear magnetic resonance spectrometry, we identified and quantified the major secondary metabolites in the latex of different organs across different growth stages in three genotypes, and tested the activity of the metabolites against the generalist root herbivore Diabrotica balteata. We found that common dandelion latex is dominated by three classes of secondary metabolites: phenolic inositol esters (PIEs), triterpene acetates (TritAc) and the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G). Purification and absolute quantification revealed concentrations in the upper mgg(-1) range for all compound classes with up to 6% PIEs, 5% TritAc and 7% TA-G per gram latex fresh weight. Contrary to typical secondary metabolite patterns, concentrations of all three classes increased with plant age. The highest concentrations were measured in the main root. PIE profiles differed both quantitatively and qualitatively between plant genotypes, whereas TritAc and TA-G differed only quantitatively. Metabolite concentrations were positively correlated within and between the different compound classes, indicating tight biosynthetic co-regulation. Latex metabolite extracts strongly repelled D. balteata larvae, suggesting that the latex constituents are biologically active.

Collaboration


Dive into the Christian Paetz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joerg Bohlmann

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge