Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Papp is active.

Publication


Featured researches published by Christian Papp.


Nature Chemistry | 2011

Covalent bulk functionalization of graphene

Jan M. Englert; Christoph Dotzer; Guang Yang; Martin Schmid; Christian Papp; J. Michael Gottfried; Hans-Peter Steinrück; Erdmann Spiecker; Frank Hauke; Andreas Hirsch

Graphene, a truly two-dimensional and fully π-conjugated honeycomb carbon network, is currently evolving into the most promising successor to silicon in micro- and nanoelectronic applications. However, its wider application is impeded by the difficulties in opening a bandgap in its gapless band-structure, as well as the lack of processability in the resultant intrinscially insoluble material. Covalent chemical modification of the π-electron system is capable of addressing both of these issues through the introduction of variable chemical decoration. Although there has been significant research activity in the field of functionalized graphene, most work to date has focused on the use of graphene oxide. In this Article, we report on the first wet chemical bulk functionalization route beginning with pristine graphite that does not require initial oxidative damage of the graphene basal planes. Through effective reductive activation, covalent functionalization of the charged graphene is achieved by organic diazonium salts. Functionalization was observed spectroscopically, and successfully prevents reaggregation while providing solubility in common organic media.


Advanced Materials | 2013

Wet Chemical Synthesis of Graphene

Siegfried Eigler; Michael Enzelberger-Heim; Stefan Grimm; Philipp Hofmann; Wolfgang Kroener; Andreas Geworski; Christoph Dotzer; Michael Röckert; Jie Xiao; Christian Papp; Ole Lytken; Hans-Peter Steinrück; Paul Müller; Andreas Hirsch

A suitable technology for the preparation of graphene based on versatile wet chemistry is presented for the first time. The protocol allows the wet chemical synthesis of graphene from a new form of graphene oxide that consists of an intact hexagonal σ-framework of C-atoms. Thus, it can be easily reduced to graphene that is no longer dominated by defects.


Chemistry: A European Journal | 2010

Methane Activation by Platinum: Critical Role of Edge and Corner Sites of Metal Nanoparticles

Francesc Viñes; Yaroslava Lykhach; Thorsten Staudt; Michael P. A. Lorenz; Christian Papp; Hans-Peter Steinrück; Jörg Libuda; Konstantin M. Neyman; Andreas Görling

Complete dehydrogenation of methane is studied on model Pt catalysts by means of state-of-the-art DFT methods and by a combination of supersonic molecular beams with high-resolution photoelectron spectroscopy. The DFT results predict that intermediate species like CH(3) and CH(2) are specially stabilized at sites located at particles edges and corners by an amount of 50-80 kJ mol(-1). This stabilization is caused by an enhanced activity of low-coordinated sites accompanied by their special flexibility to accommodate adsorbates. The kinetics of the complete dehydrogenation of methane is substantially modified according to the reaction energy profiles when switching from Pt(111) extended surfaces to Pt nanoparticles. The CH(3) and CH(2) formation steps are endothermic on Pt(111) but markedly exothermic on Pt(79). An important decrease of the reaction barriers is observed in the latter case with values of approximately 60 kJ mol(-1) for first C-H bond scission and 40 kJ mol(-1) for methyl decomposition. DFT predictions are experimentally confirmed by methane decomposition on Pt nanoparticles supported on an ordered CeO(2) film on Cu(111). It is shown that CH(3) generated on the Pt nanoparticles undergoes spontaneous dehydrogenation at 100 K. This is in sharp contrast to previous results on Pt single-crystal surfaces in which CH(3) was stable up to much higher temperatures. This result underlines the critical role of particle edge sites in methane activation and dehydrogenation.


Nature Materials | 2011

Probing bulk electronic structure with hard X-ray angle-resolved photoemission

A. X. Gray; Christian Papp; S. Ueda; B. Balke; Yoshiyuki Yamashita; Lukasz Plucinski; J. Minár; J. Braun; Erik R. Ylvisaker; Claus M. Schneider; Warren E. Pickett; H. Ebert; Keisuke Kobayashi; C. S. Fadley

Traditional ultraviolet/soft X-ray angle-resolved photoemission spectroscopy (ARPES) may in some cases be too strongly influenced by surface effects to be a useful probe of bulk electronic structure. Going to hard X-ray photon energies and thus larger electron inelastic mean-free paths should provide a more accurate picture of bulk electronic structure. We present experimental data for hard X-ray ARPES (HARPES) at energies of 3.2 and 6.0 keV. The systems discussed are W, as a model transition-metal system to illustrate basic principles, and GaAs, as a technologically-relevant material to illustrate the potential broad applicability of this new technique. We have investigated the effects of photon wave vector on wave vector conservation, and assessed methods for the removal of phonon-associated smearing of features and photoelectron diffraction effects. The experimental results are compared to free-electron final-state model calculations and to more precise one-step photoemission theory including matrix element effects.


Journal of the American Chemical Society | 2014

Carbon Dioxide Capture by an Amine Functionalized Ionic Liquid: Fundamental Differences of Surface and Bulk Behavior

Inga Niedermaier; Matthias Bahlmann; Christian Papp; Claudia Kolbeck; Wei Wei; Sandra Krick Calderón; Mathias Grabau; Peter S. Schulz; Peter Wasserscheid; Hans-Peter Steinrück; Florian Maier

Carbon dioxide (CO2) absorption by the amine-functionalized ionic liquid (IL) dihydroxyethyldimethylammonium taurinate at 310 K was studied using surface- and bulk-sensitive experimental techniques. From near-ambient pressure X-ray photoelectron spectroscopy at 0.9 mbar CO2, the amount of captured CO2 per mole of IL in the near-surface region is quantified to ~0.58 mol, with ~0.15 mol in form of carbamate dianions and ~0.43 mol in form of carbamic acid. From isothermal uptake experiments combined with infrared spectroscopy, CO2 is found to be bound in the bulk as carbamate (with nominally 0.5 mol of CO2 bound per 1 mol of IL) up to ~2.5 bar CO2, and as carbamic acid (with nominally 1 mol CO2 bound per 1 mol IL) at higher pressures. We attribute the fact that at low pressures carbamic acid is the dominating species in the near-surface region, while only carbamate is formed in the bulk, to differences in solvation in the outermost IL layers as compared to the bulk situation.


Physical Review B | 2013

Growth and electronic structure of boron-doped graphene

Julian Gebhardt; Roland Koch; Wei Zhao; Oliver Höfert; Karin Gotterbarm; S. Mammadov; Christian Papp; Andreas Görling; Hans-Peter Steinrück; Th. Seyller

The doping of graphene to tune its electronic properties is essential for its further use in carbon-based electronics. Adapting strategies from classical silicon-based semiconductor technology, we use the incorporation of heteroatoms in the 2D graphene network as a straightforward way to achieve this goal. Here, we report on the synthesis of boron-doped graphene on Ni(111) in a chemical vapor deposition process of triethylborane on the one hand and by segregation of boron from the bulk of the substrate crystal on the other hand. The chemical environment of boron was determined by x-ray photoelectron spectroscopy, and angle-resolved photoelectron spectroscopy was used to analyze the impact on the band structure. Doping with boron leads to a shift of the graphene bands to lower binding energies. The shift depends on the doping concentration and for a doping level of 0.3 ML a shift of up to 1.2 eV is observed. The experimental results are in agreement with density-functional calculations. Furthermore, our calculations suggest that doping with boron leads to graphene preferentially adsorbed in the top-fcc geometry, since the boron atoms in the graphene lattice are then adsorbed at substrate fcc-hollow sites. The smaller distance of boron atoms incorporated into graphene compared to graphene carbon atoms leads to a bending of the doped graphene sheet in the vicinity of the boron atoms. By comparing calculations of doped and undoped graphene on Ni(111), as well as the respective freestanding cases, we are able to distinguish between the effects that doping and adsorption have on the band structure of graphene. Both doping and bonding to the surface result in opposing shifts on the graphene bands.


Chemistry: A European Journal | 2011

Dehydrogenation of Dodecahydro-N-ethylcarbazole on Pd/Al2O3 Model Catalysts

Marek Sobota; Ioannis Nikiforidis; Max Amende; Beatriz Sanmartín Zanón; Thorsten Staudt; Oliver Höfert; Yaroslava Lykhach; Christian Papp; Wolfgang Hieringer; Mathias Laurin; Daniel Assenbaum; Peter Wasserscheid; Hans-Peter Steinrück; Andreas Görling; Jörg Libuda

To elucidate the dehydrogenation mechanism of dodecahydro-N-ethylcarbazole (H(12)-NEC) on supported Pd catalysts, we have performed a model study under ultra high vacuum (UHV) conditions. H(12)-NEC and its final dehydrogenation product, N-ethylcarbazole (NEC), were deposited by physical vapor deposition (PVD) at temperatures between 120 K and 520 K onto a supported model catalyst, which consisted of Pd nanoparticles grown on a well-ordered alumina film on NiAl(110). Adsorption and thermally induced surface reactions were followed by infrared reflection absorption spectroscopy (IRAS) and high-resolution X-ray photoelectron spectroscopy (HR-XPS) in combination with density functional theory (DFT) calculations. It was shown that, at 120 K, H(12)-NEC adsorbs molecularly both on the Al(2)O(3)/NiAl(110) support and on the Pd particles. Initial activation of the molecule occurs through C-H bond scission at the 8a- and 9a-positions of the carbazole skeleton at temperatures above 170 K. Dehydrogenation successively proceeds with increasing temperature. Around 350 K, breakage of one C-N bond occurs accompanied by further dehydrogenation of the carbon skeleton. The decomposition intermediates reside on the surface up to 500 K. At higher temperatures, further decay to small fragments and atomic species is observed. These species block most of the absorption sites on the Pd particles, but can be oxidatively removed by heating in oxygen at 600 K, fully restoring the original adsorption properties of the model catalyst.


Accounts of Chemical Research | 2017

Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy

Patrick Preuster; Christian Papp; Peter Wasserscheid

The need to drastically reduce CO2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO2 or N2, hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of pure hydrocarbon and nitrogen-containing LOHC compounds are derived from the literature, and attractive future research directions are highlighted. Finally, applications of the LOHC technology are presented. This part covers stationary energy storage (on-grid and off-grid), hydrogen logistics, and on-board hydrogen production for mobile applications. Technology readiness of these fields is very different. For stationary energy storage systems, the feasibility of the LOHC technology has been recently proven in commercial demonstrators, and cost aspects will decide on their further commercial success. For other highly attractive options, such as, hydrogen delivery to hydrogen filling stations or direct-LOHC-fuel cell applications, significant efforts in fundamental and applied research are still needed and, hopefully, encouraged by this Account.


New Journal of Physics | 2005

Activated adsorption of methane on Pt(1 1 1) —an in situ XPS study

T. Fuhrmann; M. Kinne; B. Tränkenschuh; Christian Papp; Junfa Zhu; R. Denecke; H.-P. Steinrück

We have investigated the activated adsorption of methane on Pt(1 1 1) by the combination of a supersonic molecular beam and in situ high-resolution X-ray photoelectron spectroscopy at the German synchrotron radiation facility BESSY II. On exposing the surface to a methane beam with kinetic energies between 0.30 and 0.83 eV, CH3 is formed as a stable species at 120 K; upon heating, at around 260 K the adsorbed methyl partly dehydrogenates to CH and partly recombines to methane, which desorbs. Upon adsorption at 300 K, CH is directly formed as a stable surface species. To verify the chemical identity of CH as an intermediate, we have also investigated the thermal evolution of a saturated ethylene layer. Upon heating, at ~290 K partial ethylene desorption and the formation of ethylidyne is clearly observed in the spectra, as expected from the literature. From the binding energies and also from the vibrational signature of the C 1s spectra, an unequivocal assignment of the various surface species is possible. Measurements of the sticking coefficients of methane show that the saturation coverage at 120 K depends on the kinetic energy of the molecule; furthermore, the sticking coefficient for vibrationally excited molecules is strongly enhanced.


Journal of Chemical Physics | 2006

A site-selective in situ study of CO adsorption and desorption on Pt(355).

B. Tränkenschuh; N. Fritsche; T. Fuhrmann; Christian Papp; Junfa Zhu; R. Denecke; Hans-Peter Steinrück

Using time-dependent high-resolution x-ray photoelectron spectroscopy at BESSY II, the adsorption and desorption processes of CO on stepped Pt(355) = Pt[5(111) x (111)] were investigated. From a quantitative analysis of C 1s data, the distribution of CO on the various adsorption sites can be determined continuously during adsorption and desorption. These unique data show that the terrace sites are only occupied when the step sites are almost saturated, even at temperatures as low as 130 K. The coverage-dependent occupation of on-top and bridge adsorption sites on the (111) terraces of Pt(355) is found to differ from that on Pt(111), which is attributed to the finite width of the terraces and changes in adsorbate-adsorbate interactions. In particular, no long-range order of the adsorbate layer could be observed by low-energy electron diffraction. Further details are derived from sticking coefficient measurements using the method devised by King and Wells [Proc. R. Soc. London, Ser. A 339, 245 (1974)] and temperature-programmed desorption. The CO saturation coverage is found to be slightly smaller on the stepped surface as compared to that on Pt(111). The initial sticking coefficient has the same high value of 0.91 for both surfaces.

Collaboration


Dive into the Christian Papp's collaboration.

Top Co-Authors

Avatar

Hans-Peter Steinrück

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Oliver Höfert

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Udo Bauer

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Florian Späth

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Andreas Görling

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Gotterbarm

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Jörg Libuda

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Michael P. A. Lorenz

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Peter Wasserscheid

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge