Christian Partl
Graz University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Partl.
IEEE Transactions on Visualization and Computer Graphics | 2010
Alexander Lex; Marc Streit; Christian Partl; Karl Kashofer; Dieter Schmalstieg
When analyzing multidimensional, quantitative data, the comparison of two or more groups of dimensions is a common task. Typical sources of such data are experiments in biology, physics or engineering, which are conducted in different configurations and use replicates to ensure statistically significant results. One common way to analyze this data is to filter it using statistical methods and then run clustering algorithms to group similar values. The clustering results can be visualized using heat maps, which show differences between groups as changes in color. However, in cases where groups of dimensions have an a priori meaning, it is not desirable to cluster all dimensions combined, since a clustering algorithm can fragment continuous blocks of records. Furthermore, identifying relevant elements in heat maps becomes more difficult as the number of dimensions increases. To aid in such situations, we have developed Matchmaker, a visualization technique that allows researchers to arbitrarily arrange and compare multiple groups of dimensions at the same time. We create separate groups of dimensions which can be clustered individually, and place them in an arrangement of heat maps reminiscent of parallel coordinates. To identify relations, we render bundled curves and ribbons between related records in different groups. We then allow interactive drill-downs using enlarged detail views of the data, which enable in-depth comparisons of clusters between groups. To reduce visual clutter, we minimize crossings between the views. This paper concludes with two case studies. The first demonstrates the value of our technique for the comparison of clustering algorithms. In the second, biologists use our system to investigate why certain strains of mice develop liver disease while others remain healthy, informally showing the efficacy of our system when analyzing multidimensional data containing distinct groups of dimensions.
Computer Graphics Forum | 2012
Alexander Lex; Marc Streit; Hans-Joerg Schulz; Christian Partl; Dieter Schmalstieg; Peter J. Park; Nils Gehlenborg
Identification and characterization of cancer subtypes are important areas of research that are based on the integrated analysis of multiple heterogeneous genomics datasets. Since there are no tools supporting this process, much of this work is done using ad‐hoc scripts and static plots, which is inefficient and limits visual exploration of the data. To address this, we have developed StratomeX, an integrative visualization tool that allows investigators to explore the relationships of candidate subtypes across multiple genomic data types such as gene expression, DNA methylation, or copy number data. StratomeX represents datasets as columns and subtypes as bricks in these columns. Ribbons between the columns connect bricks to show subtype relationships across datasets. Drill‐down features enable detailed exploration. StratomeX provides insights into the functional and clinical implications of candidate subtypes by employing small multiples, which allow investigators to assess the effect of subtypes on molecular pathways or outcomes such as patient survival. As the configuration of viewing parameters in such a multi‐dataset, multi‐view scenario is complex, we propose a meta visualization and configuration interface for dataset dependencies and data‐view relationships. StratomeX is developed in close collaboration with domain experts. We describe case studies that illustrate how investigators used the tool to explore subtypes in large datasets and demonstrate how they efficiently replicated findings from the literature and gained new insights into the data.
IEEE Transactions on Visualization and Computer Graphics | 2011
Alexander Lex; Hans-Jörg Schulz; Marc Streit; Christian Partl; Dieter Schmalstieg
Large volumes of real-world data often exhibit inhomogeneities: vertically in the form of correlated or independent dimensions and horizontally in the form of clustered or scattered data items. In essence, these inhomogeneities form the patterns in the data that researchers are trying to find and understand. Sophisticated statistical methods are available to reveal these patterns, however, the visualization of their outcomes is mostly still performed in a one-view-fits-all manner, In contrast, our novel visualization approach, VisBricks, acknowledges the inhomogeneity of the data and the need for different visualizations that suit the individual characteristics of the different data subsets. The overall visualization of the entire data set is patched together from smaller visualizations, there is one VisBrick for each cluster in each group of interdependent dimensions. Whereas the total impression of all VisBricks together gives a comprehensive high-level overview of the different groups of data, each VisBrick independently shows the details of the group of data it represents, State-of-the-art brushing and visual linking between all VisBricks furthermore allows the comparison of the groupings and the distribution of data items among them. In this paper, we introduce the VisBricks visualization concept, discuss its design rationale and implementation, and demonstrate its usefulness by applying it to a use case from the field of biomedicine.
IEEE Transactions on Visualization and Computer Graphics | 2013
Alexander Lex; Christian Partl; Denis Kalkofen; Marc Streit; Samuel Gratzl; Anne Mai Wassermann; Dieter Schmalstieg; Hanspeter Pfister
Biological pathway maps are highly relevant tools for many tasks in molecular biology. They reduce the complexity of the overall biological network by partitioning it into smaller manageable parts. While this reduction of complexity is their biggest strength, it is, at the same time, their biggest weakness. By removing what is deemed not important for the primary function of the pathway, biologists lose the ability to follow and understand cross-talks between pathways. Considering these cross-talks is, however, critical in many analysis scenarios, such as judging effects of drugs. In this paper we introduce Entourage, a novel visualization technique that provides contextual information lost due to the artificial partitioning of the biological network, but at the same time limits the presented information to what is relevant to the analysts task. We use one pathway map as the focus of an analysis and allow a larger set of contextual pathways. For these context pathways we only show the contextual subsets, i.e., the parts of the graph that are relevant to a selection. Entourage suggests related pathways based on similarities and highlights parts of a pathway that are interesting in terms of mapped experimental data. We visualize interdependencies between pathways using stubs of visual links, which we found effective yet not obtrusive. By combining this approach with visualization of experimental data, we can provide domain experts with a highly valuable tool. We demonstrate the utility of Entourage with case studies conducted with a biochemist who researches the effects of drugs on pathways. We show that the technique is well suited to investigate interdependencies between pathways and to analyze, understand, and predict the effect that drugs have on different cell types.
BMC Bioinformatics | 2013
Christian Partl; Alexander Lex; Marc Streit; Denis Kalkofen; Karl Kashofer; Dieter Schmalstieg
Jointly analyzing biological pathway maps and experimental data is critical for understanding how biological processes work in different conditions and why different samples exhibit certain characteristics. This joint analysis, however, poses a significant challenge for visualization. Current techniques are either well suited to visualize large amounts of pathway node attributes, or to represent the topology of the pathway well, but do not accomplish both at the same time. To address this we introduce enRoute, a technique that enables analysts to specify a path of interest in a pathway, extract this path into a separate, linked view, and show detailed experimental data associated with the nodes of this extracted path right next to it. This juxtaposition of the extracted path and the experimental data allows analysts to simultaneously investigate large amounts of potentially heterogeneous data, thereby solving the problem of joint analysis of topology and node attributes. As this approach does not modify the layout of pathway maps, it is compatible with arbitrary graph layouts, including those of hand-crafted, image-based pathway maps. We demonstrate the technique in context of pathways from the KEGG and the Wikipathways databases. We apply experimental data from two public databases, the Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA) that both contain a wide variety of genomic datasets for a large number of samples. In addition, we make use of a smaller dataset of hepatocellular carcinoma and common xenograft models. To verify the utility of enRoute, domain experts conducted two case studies where they explore data from the CCLE and the hepatocellular carcinoma datasets in the context of relevant pathways.
Nature Methods | 2014
Marc Streit; Alexander Lex; Samuel Gratzl; Christian Partl; Dieter Schmalstieg; Hanspeter Pfister; Peter J. Park; Nils Gehlenborg
To the editor: Cancer is a heterogeneous disease, and molecular profiling of tumors from large cohorts has enabled characterization of new tumor subtypes. This is a prerequisite for improving personalized treatment and ultimately better patient outcomes. Potential tumor subtypes can be identified with methods such as unsupervised clustering1 or network-based stratification2, which assign patients to sets based on high-dimensional molecular profiles. Detailed characterization of identified sets and their interpretation, however, remain a time-consuming exploratory process. To address these challenges, we combine ‘StratomeX’3, an interactive visualization tool, freely available at http://www.caleydo.org, with exploration tools to efficiently compare multiple patient stratifications, to correlate patient sets with clinical information or genomic alterations, and to view the differences between molecular profiles across patient sets. Although we focus on cancer genomics here, StratomeX can also be applied in other disease cohorts. Thousands of patient stratifications can be derived from large cancer genomics datasets. This space of patient stratifications—which we call the ‘stratome’—contains stratifications based on, for example, clustering of mRNA, microRNA, or protein expression matrices; the mutation or copy number status of genes; or on clinical variables. Due to the size of the stratome and the heterogeneity of the underlying datasets, integration of computational and visual approaches is indispensable to the analyst in identifying biologically or clinically meaningful stratifications, as well as clinical parameters and pathways that together provide a comprehensive view of each patient set. StratomeX complements the network viewers, heat maps, and genome browsers typically used in cancer genomics4 (Supplementary Discussion and Supplementary Table 1). To visualize the relationships between multiple patient stratifications as well as other data (Fig. 1 and Supplementary Fig. 1), stratifications are represented as columns of stacked blocks where each block corresponds to a patient set. Blocks contain visualizations of the data associated with those patients, such as heat maps, pathway maps overlaid with expression data, or survival plots (Supplementary Fig. 2). Bands connecting the blocks show the pairwise overlap of sets in adjacent stratifications, with the width of the bands representing the size of the overlap relative to the size of the patient sets (Supplementary Fig. 3). This visualization is an efficient tool to confirm hypotheses about gene functions or subtypes defined by molecular profiles. Figure 1 Seamless integration of visual and computational components in the extended StratomeX tool StratomeX also integrates a computational framework for query-based guided exploration of the stratome directly into the visualization (Fig. 1), enabling discovery of novel relationships between patient sets and efficient generation and refinement of hypotheses about tumor subtypes. A ‘query wizard’ provides step-by-step instructions (Supplementary Fig. 1 and 4) for defining queries, and a range of computational methods are used to generate rankings (Supplementary Methods). Queries score stratifications, for example, based on their overlap with a particular patient set, or based on their overall similarity to a selected stratification. Furthermore, the analyst can query the collection for stratifications that contain patient sets that exhibit differences in survival or differential regulation of pathways. We use ‘LineUp’5, a multi-attribute ranking technique, to visualize the results of these queries and to show which stratifications or pathways score high (Fig. 1 and Supplementary Fig. 5). The tight integration between the StratomeX and LineUp views, as well as the dynamic computation of scores, is essential for rapid identification of meaningful relationships between stratifications, clinical parameters, and pathways. We demonstrate the effectiveness of StratomeX in a case study (Supplementary Note, Supplementary Figs. 6-18, Supplementary Tables 2 and 3, and Supplementary Video 1) in which we explored molecular and clinical data to characterize tumor subtypes in a cohort of over 400 clear cell renal cell carcinoma cases reported by The Cancer Genome Atlas consortium6.
2012 IEEE Symposium on Biological Data Visualization (BioVis) | 2012
Christian Partl; Alexander Lex; Marc Streit; Denis Kalkofen; Karl Kashofer; Dieter Schmalstieg
Pathway maps are an important source of information when analyzing functional implications of experimental data on biological processes. However, associating large quantities of data with nodes on a pathway map and allowing in depth-analysis at the same time is a challenging task. While a wide variety of approaches for doing so exist, they either do not scale beyond a few experiments or fail to represent the pathway appropriately. To remedy this, we introduce enRoute, a new approach for interactively exploring experimental data along paths that are dynamically extracted from pathways. By showing an extracted path side-by-side with experimental data, enRoute can present large amounts of data for every pathway node. It can visualize hundreds of samples, dozens of experimental conditions, and even multiple datasets capturing different aspects of a node at the same time. Another important property of this approach is its conceptual compatibility with arbitrary forms of pathways. Most notably, enRoute works well with pathways that are manually created, as they are available in large, public pathway databases. We demonstrate enRoute with pathways from the well-established KEGG database and expression as well as copy number datasets from humans and mice with more than 1,000 experiments. We validate enRoute using case studies with domain experts, who used enRoute to explore data for glioblastoma multiforme in humans and a model of steatohepatitis in mice.
IEEE Transactions on Visualization and Computer Graphics | 2014
Christian Partl; Alexander Lex; Marc Streit; Hendrik Strobelt; Anne Mai Wassermann; Hanspeter Pfister; Dieter Schmalstieg
Large scale data analysis is nowadays a crucial part of drug discovery. Biologists and chemists need to quickly explore and evaluate potentially effective yet safe compounds based on many datasets that are in relationship with each other. However, there is a lack of tools that support them in these processes. To remedy this, we developed ConTour, an interactive visual analytics technique that enables the exploration of these complex, multi-relational datasets. At its core ConTour lists all items of each dataset in a column. Relationships between the columns are revealed through interaction: selecting one or multiple items in one column highlights and re-sorts the items in other columns. Filters based on relationships enable drilling down into the large data space. To identify interesting items in the first place, ConTour employs advanced sorting strategies, including strategies based on connectivity strength and uniqueness, as well as sorting based on item attributes. ConTour also introduces interactive nesting of columns, a powerful method to show the related items of a child column for each item in the parent column. Within the columns, ConTour shows rich attribute data about the items as well as information about the connection strengths to other datasets. Finally, ConTour provides a number of detail views, which can show items from multiple datasets and their associated data at the same time. We demonstrate the utility of our system in case studies conducted with a team of chemical biologists, who investigate the effects of chemical compounds on cells and need to understand the underlying mechanisms.
ieee vgtc conference on visualization | 2016
Christian Partl; Samuel Gratzl; Marc Streit; Anne Mai Wassermann; Hanspeter Pfister; Dieter Schmalstieg; Alexander Lex
The analysis of paths in graphs is highly relevant in many domains. Typically, path‐related tasks are performed in node‐link layouts. Unfortunately, graph layouts often do not scale to the size of many real world networks. Also, many networks are multivariate, i.e., contain rich attribute sets associated with the nodes and edges. These attributes are often critical in judging paths, but directly visualizing attributes in a graph layout exacerbates the scalability problem. In this paper, we present visual analysis solutions dedicated to path‐related tasks in large and highly multivariate graphs. We show that by focusing on paths, we can address the scalability problem of multivariate graph visualization, equipping analysts with a powerful tool to explore large graphs. We introduce Pathfinder, a technique that provides visual methods to query paths, while considering various constraints. The resulting set of paths is visualized in both a ranked list and as a node‐link diagram. For the paths in the list, we display rich attribute data associated with nodes and edges, and the node‐link diagram provides topological context. The paths can be ranked based on topological properties, such as path length or average node degree, and scores derived from attribute data. Pathfinder is designed to scale to graphs with tens of thousands of nodes and edges by employing strategies such as incremental query results. We demonstrate Pathfinders fitness for use in scenarios with data from a coauthor network and biological pathways.
Archive | 2016
Anne Mai Wassermann; Mark Borowsky; Christian Partl; Alexander Lex; Marc Streit; Hanspeter Pfister; Dieter Schmalstieg