Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Pennanen is active.

Publication


Featured researches published by Christian Pennanen.


Diabetes | 2014

Insulin Stimulates Mitochondrial Fusion and Function in Cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 Signaling Pathway

Valentina Parra; Hugo Verdejo; Myriam Iglewski; Andrea del Campo; Rodrigo Troncoso; Deborah Jones; Yi Zhu; Jovan Kuzmicic; Christian Pennanen; Camila Lopez‑Crisosto; Fabián Jaña; Jorge Ferreira; Eduard Noguera; Mario Chiong; David A. Bernlohr; Amira Klip; Joseph A. Hill; Beverly A. Rothermel; Evan Dale Abel; Antonio Zorzano; Sergio Lavandero

Insulin regulates heart metabolism through the regulation of insulin-stimulated glucose uptake. Studies have indicated that insulin can also regulate mitochondrial function. Relevant to this idea, mitochondrial function is impaired in diabetic individuals. Furthermore, the expression of Opa-1 and mitofusins, proteins of the mitochondrial fusion machinery, is dramatically altered in obese and insulin-resistant patients. Given the role of insulin in the control of cardiac energetics, the goal of this study was to investigate whether insulin affects mitochondrial dynamics in cardiomyocytes. Confocal microscopy and the mitochondrial dye MitoTracker Green were used to obtain three-dimensional images of the mitochondrial network in cardiomyocytes and L6 skeletal muscle cells in culture. Three hours of insulin treatment increased Opa-1 protein levels, promoted mitochondrial fusion, increased mitochondrial membrane potential, and elevated both intracellular ATP levels and oxygen consumption in cardiomyocytes in vitro and in vivo. Consequently, the silencing of Opa-1 or Mfn2 prevented all the metabolic effects triggered by insulin. We also provide evidence indicating that insulin increases mitochondrial function in cardiomyocytes through the Akt-mTOR-NFκB signaling pathway. These data demonstrate for the first time in our knowledge that insulin acutely regulates mitochondrial metabolism in cardiomyocytes through a mechanism that depends on increased mitochondrial fusion, Opa-1, and the Akt-mTOR-NFκB pathway.


The Journal of Physiology | 2016

Mitochondrial dynamics, mitophagy and cardiovascular disease

César Vásquez-Trincado; Ivonne Garcia-Carvajal; Christian Pennanen; Valentina Parra; Joseph A. Hill; Beverly A. Rothermel; Sergio Lavandero

Cardiac hypertrophy is often initiated as an adaptive response to haemodynamic stress or myocardial injury, and allows the heart to meet an increased demand for oxygen. Although initially beneficial, hypertrophy can ultimately contribute to the progression of cardiac disease, leading to an increase in interstitial fibrosis and a decrease in ventricular function. Metabolic changes have emerged as key mechanisms involved in the development and progression of pathological remodelling. As the myocardium is a highly oxidative tissue, mitochondria play a central role in maintaining optimal performance of the heart. ‘Mitochondrial dynamics’, the processes of mitochondrial fusion, fission, biogenesis and mitophagy that determine mitochondrial morphology, quality and abundance have recently been implicated in cardiovascular disease. Studies link mitochondrial dynamics to the balance between energy demand and nutrient supply, suggesting that changes in mitochondrial morphology may act as a mechanism for bioenergetic adaptation during cardiac pathological remodelling. Another critical function of mitochondrial dynamics is the removal of damaged and dysfunctional mitochondria through mitophagy, which is dependent on the fission/fusion cycle. In this article, we discuss the latest findings regarding the impact of mitochondrial dynamics and mitophagy on the development and progression of cardiovascular pathologies, including diabetic cardiomyopathy, atherosclerosis, damage from ischaemia–reperfusion, cardiac hypertrophy and decompensated heart failure. We will address the ability of mitochondrial fusion and fission to impact all cell types within the myocardium, including cardiac myocytes, cardiac fibroblasts and vascular smooth muscle cells. Finally, we will discuss how these findings can be applied to improve the treatment and prevention of cardiovascular diseases.


Journal of Cell Science | 2014

Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway

Christian Pennanen; Valentina Parra; Camila López-Crisosto; Pablo E. Morales; Andrea del Campo; Tomás Gutierrez; Pablo Rivera-Mejías; Jovan Kuzmicic; Mario Chiong; Antonio Zorzano; Beverly A. Rothermel; Sergio Lavandero

ABSTRACT Cardiomyocyte hypertrophy has been associated with diminished mitochondrial metabolism. Mitochondria are crucial organelles for the production of ATP, and their morphology and function are regulated by the dynamic processes of fusion and fission. The relationship between mitochondrial dynamics and cardiomyocyte hypertrophy is still poorly understood. Here, we show that treatment of cultured neonatal rat cardiomyocytes with the hypertrophic agonist norepinephrine promotes mitochondrial fission (characterized by a decrease in mitochondrial mean volume and an increase in the relative number of mitochondria per cell) and a decrease in mitochondrial function. We demonstrate that norepinephrine acts through &agr;1-adrenergic receptors to increase cytoplasmic Ca2+, activating calcineurin and promoting migration of the fission protein Drp1 (encoded by Dnml1) to mitochondria. Dominant-negative Drp1 (K38A) not only prevented mitochondrial fission, it also blocked hypertrophic growth of cardiomyocytes in response to norepinephrine. Remarkably, an antisense adenovirus against the fusion protein Mfn2 (AsMfn2) was sufficient to increase mitochondrial fission and stimulate a hypertrophic response without agonist treatment. Collectively, these results demonstrate the importance of mitochondrial dynamics in the development of cardiomyocyte hypertrophy and metabolic remodeling.


Journal of Cardiovascular Pharmacology | 2014

Drp1 loss-of-function reduces cardiomyocyte oxygen dependence protecting the heart from ischemia-reperfusion injury.

Ramiro Zepeda; Jovan Kuzmicic; Valentina Parra; Rodrigo Troncoso; Christian Pennanen; Jaime A. Riquelme; Zully Pedrozo; Mario Chiong; Gina Sánchez; Sergio Lavandero

Abstract: Mitochondria are key organelles for ATP production in cardiomyocytes, which is regulated by processes of fission and fusion. We hypothesized that the mitochondria fusion protein dynamin-related protein 1 (Drp1) inhibition, attenuates ischemia-reperfusion (I/R) injury through modifications in mitochondrial metabolism. Rats were subjected to I/R through coronary artery ligation, and isolated cardiomyocytes were treated with an ischemia-mimicking solution. In vivo, cardiac function, myocardial infarction area, and mitochondrial morphology were determined, whereas in vitro, viability, mitochondrial membrane potential, intracellular ATP levels, and oxygen consumption rate (OCR) were assessed. In both models, an adenovirus expressing Drp1 dominant-negative K38A (Drp1K38A) was used to induce Drp1 loss-of-function. Our results showed that I/R stimulated mitochondrial fission. Myocardial infarction size and cell death induced by I/R were significantly reduced, whereas cardiac function after I/R was improved in Drp1K38A-treated rats compared with controls. Drp1K38A-transduced cardiomyocytes showed lower OCR with no decrease in intracellular ATP levels, and on I/R, a larger decrease in OCR with a smaller reduction in intracellular ATP level was observed. However, proton leak-associated oxygen consumption was comparatively higher in Drp1K38A-treated cardiomyocytes, suggesting a protective mitochondrial uncoupling effect against I/R. Collectively, our results show that Drp1 inhibition triggers cardioprotection by reducing mitochondrial metabolism during I/R.


Journal of Bioenergetics and Biomembranes | 2011

The complex interplay between mitochondrial dynamics and cardiac metabolism

Valentina Parra; Hugo Verdejo; Andrea del Campo; Christian Pennanen; Jovan Kuzmicic; Myriam Iglewski; Joseph A. Hill; Beverly A. Rothermel; Sergio Lavandero

Mitochondria are highly dynamic organelles, capable of undergoing constant fission and fusion events, forming networks. These dynamic events allow the transmission of chemical and physical messengers and the exchange of metabolites within the cell. In this article we review the signaling mechanisms controlling mitochondrial fission and fusion, and its relationship with cell bioenergetics, especially in the heart. Furthermore we also discuss how defects in mitochondrial dynamics might be involved in the pathogenesis of metabolic cardiac diseases.


Revista Espanola De Cardiologia | 2011

Dinámica mitocondrial: un potencial nuevo blanco terapéutico para la insuficiencia cardiaca

Jovan Kuzmicic; Andrea del Campo; Camila López-Crisosto; Pablo E. Morales; Christian Pennanen; Roberto Bravo-Sagua; Jonathan Hechenleitner; Ramiro Zepeda; Pablo Castro; Hugo Verdejo; Valentina Parra; Mario Chiong; Sergio Lavandero

Mitochondria are dynamic organelles able to vary their morphology between elongated interconnected mitochondrial networks and fragmented disconnected arrays, through events of mitochondrial fusion and fission, respectively. These events allow the transmission of signaling messengers and exchange of metabolites within the cell. They have also been implicated in a variety of biological processes including embryonic development, metabolism, apoptosis, and autophagy. Although the majority of these studies have been confined to noncardiac cells, emerging evidence suggests that changes in mitochondrial morphology could participate in cardiac development, the response to ischemia-reperfusion injury, heart failure, and diabetes mellitus. In this article, we review how the mitochondrial dynamics are altered in different cardiac pathologies, with special emphasis on heart failure, and how this knowledge may provide new therapeutic targets for treating cardiovascular diseases.


Cell Communication and Signaling | 2014

Alteration in mitochondrial Ca2+ uptake disrupts insulin signaling in hypertrophic cardiomyocytes

Tomás Gutierrez; Valentina Parra; Rodrigo Troncoso; Christian Pennanen; Ariel Contreras-Ferrat; César Vásquez-Trincado; Pablo E. Morales; Camila López-Crisosto; Cristian Sotomayor-Flores; Mario Chiong; Beverly A. Rothermel; Sergio Lavandero

BackgroundCardiac hypertrophy is characterized by alterations in both cardiac bioenergetics and insulin sensitivity. Insulin promotes glucose uptake by cardiomyocytes and its use as a substrate for glycolysis and mitochondrial oxidation in order to maintain the high cardiac energy demands. Insulin stimulates Ca2+ release from the endoplasmic reticulum, however, how this translates to changes in mitochondrial metabolism in either healthy or hypertrophic cardiomyocytes is not fully understood.ResultsIn the present study we investigated insulin-dependent mitochondrial Ca2+ signaling in normal and norepinephrine or insulin like growth factor-1-induced hypertrophic cardiomyocytes. Using mitochondrion-selective Ca2+-fluorescent probes we showed that insulin increases mitochondrial Ca2+ levels. This signal was inhibited by the pharmacological blockade of either the inositol 1,4,5-triphosphate receptor or the mitochondrial Ca2+ uniporter, as well as by siRNA-dependent mitochondrial Ca2+ uniporter knockdown. Norepinephrine-stimulated cardiomyocytes showed a significant decrease in endoplasmic reticulum-mitochondrial contacts compared to either control or insulin like growth factor-1-stimulated cells. This resulted in a reduction in mitochondrial Ca2+ uptake, Akt activation, glucose uptake and oxygen consumption in response to insulin. Blocking mitochondrial Ca2+ uptake was sufficient to mimic the effect of norepinephrine-induced cardiomyocyte hypertrophy on insulin signaling.ConclusionsMitochondrial Ca2+ uptake is a key event in insulin signaling and metabolism in cardiomyocytes.


The International Journal of Biochemistry & Cell Biology | 2014

Organelle communication: signaling crossroads between homeostasis and disease.

Roberto Bravo-Sagua; Natalia Torrealba; Felipe Paredes; Pablo E. Morales; Christian Pennanen; Camila López-Crisosto; Rodrigo Troncoso; Alfredo Criollo; Mario Chiong; Joseph A. Hill; Thomas Simmen; Andrew F.G. Quest; Sergio Lavandero

Cellular organelles do not function as isolated or static units, but rather form dynamic contacts between one another that can be modulated according to cellular needs. The physical interfaces between organelles are important for Ca2+ and lipid homeostasis, and serve as platforms for the control of many essential functions including metabolism, signaling, organelle integrity and execution of the apoptotic program. Emerging evidence also highlights the importance of organelle communication in disorders such as Alzheimers disease, pulmonary arterial hypertension, cancer, skeletal and cardiac muscle dysfunction. Here, we provide an overview of the current literature on organelle communication and the link to human pathologies.


Nature Reviews Cardiology | 2017

Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology

Camila López-Crisosto; Christian Pennanen; César Vásquez-Trincado; Pablo E. Morales; Roberto Bravo-Sagua; Andrew F.G. Quest; Mario Chiong; Sergio Lavandero

Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum–mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum–mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.


Biochemical Pharmacology | 2015

FK866 compromises mitochondrial metabolism and adaptive stress responses in cultured cardiomyocytes

Alejandra P. Oyarzún; Francisco Westermeier; Christian Pennanen; Camila López-Crisosto; Valentina Parra; Cristian Sotomayor-Flores; Gina Sánchez; Zully Pedrozo; Rodrigo Troncoso; Sergio Lavandero

AIM FK866 is an inhibitor of the NAD(+) synthesis rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT). Using FK866 to target NAD(+) synthesis has been proposed as a treatment for inflammatory diseases and cancer. However, use of FK866 may pose cardiovascular risks, as NAMPT expression is decreased in various cardiomyopathies, with low NAD(+) levels playing an important role in cardiovascular disease progression. In addition, low NAD(+) levels are associated with cardiovascular risk conditions such as aging, dyslipidemia, and type II diabetes mellitus. The aim of this work was to study the effects of FK866-induced NAD(+) depletion on mitochondrial metabolism and adaptive stress responses in cardiomyocytes. METHODS AND RESULTS FK866 was used to deplete NAD(+) levels in cultured rat cardiomyocytes. Cell viability, mitochondrial metabolism, and adaptive responses to insulin, norepinephrine, and H2O2 were assessed in cardiomyocytes. The drop in NAD(+) induced by FK866 decreased mitochondrial metabolism without changing cell viability. Insulin-stimulated Akt phosphorylation, glucose uptake, and H2O2-survival were compromised by FK866. Glycolytic gene transcription was increased, whereas cardiomyocyte hypertrophy induced by norepinephrine was prevented. Restoring NAD(+) levels via nicotinamide mononucleotide administration reestablished mitochondrial metabolism and adaptive stress responses. CONCLUSION This work shows that FK866 compromises mitochondrial metabolism and the adaptive response of cardiomyocytes to norepinephrine, H2O2, and insulin.

Collaboration


Dive into the Christian Pennanen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beverly A. Rothermel

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge