Christian Perotti
University of Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christian Perotti.
Nature Genetics | 2014
Claudia L. Kleinman; Noha Gerges; Simon Papillon-Cavanagh; Patrick Sin-Chan; Albena Pramatarova; Dong Anh Khuong Quang; Véronique Adoue; Stephan Busche; Maxime Caron; Haig Djambazian; Amandine Bemmo; Adam M. Fontebasso; Tara Spence; Jeremy Schwartzentruber; Steffen Albrecht; Péter Hauser; Miklós Garami; Almos Klekner; László Bognár; Jose Luis Montes; Alfredo Staffa; Alexandre Montpetit; Pierre Bérubé; Magdalena Zakrzewska; Krzysztof Zakrzewski; Pawel P. Liberski; Zhifeng Dong; Peter M. Siegel; Thomas F. Duchaine; Christian Perotti
Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.
British Journal of Cancer | 2004
Christian Perotti; Haydée Fukuda; G DiVenosa; Alexander J. MacRobert; A Batlle; Adriana Casas
The aim of this work was to test in vitro and in vivo the efficacy of the derivatives of 5-aminolevulinic acid (ALA): hexyl-ALA (He-ALA), undecanoyl-ALA and R,S-2-(hydroximethyl)tetrahydropyranyl-ALA (THP-ALA) as pro-photosensitising agents. The compounds were assayed in a cell line derived from a murine mammary tumour, in tumour explants and after injection of the cells into mice. In vitro, undecanoyl-ALA and THP-ALA did not improve ALA efficacy in terms of porphyrin synthesis. On the other hand, half of the amount of ALA is required to obtain the same plateau amount of photosensitiser from He-ALA. However, this plateau value cannot be surpassed in spite of the four-times higher accumulation of ALA/He-ALA from the ALA derivative. This shows that He-ALA conversion to porphyrins but not He-ALA entry to the cells is limiting. Employing ionic exchange chromatography, we found that 80% of total uptake was He-ALA whereas only 20% was ALA. This suggests that the esterases, probably themselves regulated by the heme pathway, are limiting the conversion of ALA derivatives into porphyrins. A similar situation occurs with THP-ALA. Tumour explant porphyrin results correlate well with cell line data. However, i.p. injection of ALA derivatives to mice resulted in a lower porphyrin concentration in the tumour when compared to the administration of equimolar amounts of ALA, indicating that there should be retention of ALA derivatives either within the blood vessels in the initial phase of distribution and/or within the capillaries of the tumour.
British Journal of Cancer | 2002
Adriana Casas; Christian Perotti; M Saccoliti; P Sacca; Haydée Fukuda; A.M. Del C. Batlle
In spite of the wide range of tumours successfully treated with 5-aminolevulinic acid mediated photodynamic therapy, the fact that 5-aminolevulinic acid has low lipid solubility, limits its clinical application. More lipophilic 5-aminolevulinic acid prodrugs and the use of liposomal carriers are two approaches aimed at improving 5-aminolevulinic acid transmembrane access. In this study we used both 5-aminolevulinic acid and its hexyl ester in their free and encapsulated formulations to compare their corresponding endogenous synthesis of porphyrins. Employing murine tumour cultures, we found that neither the use of hexyl ester nor the entrappment of either 5-aminolevulinic acid or hexyl ester into liposomes increase the rate of tumour porphyrin synthesis. By light and electronic microscopy it was demonstrated that exposure of tumour explants to either free or liposomal 5-aminolevulinic acid and subsequent illumination induces the same type of subcellullar damage. Mitochondria, endoplasmic reticulum and plasma membrane are the structures mostly injured in the early steps of photodynamic treatment. In a later stage, cytoplasmic and nuclear disintegration are observed. By electronic microscopy the involvement of the endocytic pathway in the incorporation of liposomal 5-aminolevulinic acid into the cells was shown.
British Journal of Cancer | 2001
Adriana Casas; Christian Perotti; Haydée Fukuda; L Rogers; A R Butler; A Batlle
Exogenous administration of 5-aminolevulinic acid (ALA) is becoming widely used to enhance the endogenous synthesis of Protoporphyrin IX (PpIX) in photodynamic therapy. We analysed porphyrin formation in chemically induced squamous papillomas, after topical application of ALA and ALA hexyl ester (He-ALA) administered in different formulations, as well as the pattern of distribution in the internal organs, and the synthesis of porphyrins in distant tumoural and normal skins. A lotion formulation containing DMSO and ethanol was the best vehicle for topical ALA delivery to papillomas, whereas cream was the most efficient formulation for He-ALA application. Similar porphyrin concentration can be accumulated in the skin tumours employing either ALA or He-ALA delivered in their optimal formulations. The use of cream as a vehicle of both ALA and He-ALA, induces highest porphyrin tumour/normal skin ratios. The main advantage of using He-ALA is that porphyrins synthesized from the ester are more confined to the site of application, thus inducing low porphyrin levels in normal skin, liver, blood and spleen, as well as in papillomas distant from the point of application, independently on the vehicle employed, so reducing potential side effects of photodynamic therapy.
British Journal of Cancer | 2002
Christian Perotti; Adriana Casas; Haydée Fukuda; P Sacca; A Batlle
The use of synthetic lipophilic molecules derived from 5-aminolevulinic acid (ALA) is currently under investigation to enhance cellular ALA penetration. In this work we studied the effect of systemic administration to mice of the hexyl ester of ALA (He-ALA) on porphyrin tissue synthesis as compared to ALA. In most normal tissues as well as in tumour, He-ALA induced less porphyrin synthesis than ALA after its systemic administration either intravenous or intraperitoneal, although explant organ cultures exposed to either ALA or He-ALA revealed equally active esterases. The only tissue that accumulated higher porphyrin levels from He-ALA (seven times more than ALA) was the brain, and this correlated well with a rapid increase in ALA/He-ALA content in brain after administration of He-ALA. This may be ascribed to a differential permeability to lipophilic substances controlled by the blood–brain barrier, a feature which could be further exploited to treat brain tumours.
Breast Cancer Research | 2008
Christian Perotti; Ruixuan Liu; Christine T Parusel; Nadine Böcher; Jörg Schultz; Peer Bork; Edith Pfitzner; Bernd Groner; Carrie S. Shemanko
IntroductionThe prolactin-Janus-kinase-2-signal transducer and activator of transcription-5 (JAK2-STAT5) pathway is essential for the development and functional differentiation of the mammary gland. The pathway also has important roles in mammary tumourigenesis. Prolactin regulated target genes are not yet well defined in tumour cells, and we undertook, to the best of our knowledge, the first large genetic screen of breast cancer cells treated with or without exogenous prolactin. We hypothesise that the identification of these genes should yield insights into the mechanisms by which prolactin participates in cancer formation or progression, and possibly how it regulates normal mammary gland development.MethodsWe used subtractive hybridisation to identify a number of prolactin-regulated genes in the human mammary carcinoma cell line SKBR3. Northern blotting analysis and luciferase assays identified the gene encoding heat shock protein 90-alpha (HSP90A) as a prolactin-JAK2-STAT5 target gene, whose function was characterised using apoptosis assays.ResultsWe identified a number of new prolactin-regulated genes in breast cancer cells. Focusing on HSP90A, we determined that prolactin increased HSP90A mRNA in cancerous human breast SKBR3 cells and that STAT5B preferentially activated the HSP90A promoter in reporter gene assays. Both prolactin and its downstream protein effector, HSP90α, promote survival, as shown by apoptosis assays and by the addition of the HSP90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), in both untransformed HC11 mammary epithelial cells and SKBR3 breast cancer cells. The constitutive expression of HSP90A, however, sensitised differentiated HC11 cells to starvation-induced wild-type p53-independent apoptosis. Interestingly, in SKBR3 breast cancer cells, HSP90α promoted survival in the presence of serum but appeared to have little effect during starvation.ConclusionsIn addition to identifying new prolactin-regulated genes in breast cancer cells, we found that prolactin-JAK2-STAT5 induces expression of the HSP90A gene, which encodes the master chaperone of cancer. This identifies one mechanism by which prolactin contributes to breast cancer. Increased expression of HSP90A in breast cancer is correlated with increased cell survival and poor prognosis and HSP90α inhibitors are being tested in clinical trials as a breast cancer treatment. Our results also indicate that HSP90α promotes survival depending on the cellular conditions and state of cellular transformation.
Neuro-oncology | 2014
Tara Spence; Christian Perotti; Patrick Sin-Chan; Daniel Picard; Wei Wu; Anjali Singh; Colleen Anderson; Michael D. Blough; J. Gregory Cairncross; Lucie Lafay-Cousin; Douglas Strother; Cynthia Hawkins; Aru Narendran; Annie Huang; Jennifer A. Chan
BACKGROUND Embryonal tumor with multilayered rosettes (ETMR) is an aggressive central nervous system primitive neuroectodermal tumor (CNS-PNET) variant. ETMRs have distinctive histology, amplification of the chromosome 19 microRNA cluster (C19MC) at chr19q13.41-42, expression of the RNA binding protein Lin28, and dismal prognosis. Functional and therapeutic studies of ETMR have been limited by a lack of model systems. METHODS We have established a first cell line, BT183, from a case of ETMR and characterized its molecular and cellular features. LIN28 knockdown was performed in BT183 to examine the potential role of Lin28 in regulating signaling pathway gene expression in ETMR. Cell line findings were corroborated with immunohistochemical studies in ETMR tissues. A drug screen of 73 compounds was performed to identify potential therapeutic targets. RESULTS The BT183 line maintains C19MC amplification, expresses C19MC-encoded microRNAs, and is tumor initiating. ETMRs, including BT183, have high LIN28 expression and low let-7 miRNA expression, and show evidence of mTOR pathway activation. LIN28 knockdown increases let-7 expression and decreases expression of IGF/PI3K/mTOR pathway components. Pharmacologic inhibition of the mTOR pathway reduces BT183 cell viability. CONCLUSIONS BT183 retains key genetic and histologic features of ETMR. In ETMR, Lin28 is not only a diagnostic marker but also a regulator of genes involved in growth and metabolism. Our findings indicate that inhibitors of the IGF/PI3K/mTOR pathway may be promising novel therapies for these fatal embryonal tumors. As the first patient-derived cell line of these rare tumors, BT183 is an important, unique reagent for investigating ETMR biology and therapeutics.
Cancer Letters | 2008
Adriana Casas; Gabriela Di Venosa; Silvia Vanzulli; Christian Perotti; Leandro Mamome; Lorena Rodriguez; Marina Simian; Angeles Juarranz; Osvaldo Pontiggia; Tayyaba Hasan
Photodynamic therapy (PDT) is a novel cancer treatment utilising a photosensitiser, visible light and oxygen. PDT often leaves a significant number of surviving tumour cells. In a previous work, we isolated and studied two PDT resistant clones derived from the mammary adenocarcinoma LM3 line (Int. J. Oncol. 29 (2006) 397-405). The isolated Clon 4 and Clon 8 exhibited a more fibroblastic, dendritic pattern and were larger than the parentals. In the present work we studied the metastatic potential of the two clones in comparison with LM3. We found that 100% of LM3 invaded Matrigel, whereas only 19+/-6% and 24+/-7% of Clon 4 and Clon 8 cells invaded. In addition, 100% of LM3 cells migrated towards a chemotactic stimulus whereas 38+/-8% and 73+/-10% of Clones 4 and 8, respectively, were able to migrate. In vivo, 100% of the LM3 injected mice developed spontaneous lung metastasis, whereas none of the Clon 8 did, and only one of the mice injected with Clon 4 did. No differences were found in the proteolytic enzyme profiles among the cells. Anchorage-dependent adhesion was also impaired in vivo in the resistant clones, evidenced by the lower tumour take, latency time and growth rates, although both clones showed in vitro higher binding to collagen I without overexpression of beta1 integrin. This is the first work where the metastatic potential of cells surviving to PDT has been studied. PDT strongly affects the invasive phenotype of these cells, probably related to a higher binding to collagen. These findings may be crucial for the outcome of ALA-PDT of metastatic tumours, although further studies are needed to extrapolate the results to the clinic employing another photosensitisers and cell types.
Lasers in Medical Science | 2002
Adriana Casas; Christian Perotti; Haydée Fukuda; A.M. Del C. Batlle
In this work we have studied the effects of ALA-mediated photodynamic therapy (PDT) on resting and mitogen-activated murine splenic lymphocytes, evaluating its impact on cell viability. We have also characterised the stress response, measuring the levels of antioxidant enzymes. A 2 h exposure to ALA produced 50% lethality upon irradiation of activated cells with 2.1 J/cm2. The decrease in cell survival with increasing time exposure to ALA, correlated well with the higher porphyrin accumulation. In resting lymphocytes, in spite of the low amount of porphyrins formed during 2 h incubation with ALA, 40% of the cells died after irradiation, this response was not further increased when higher amounts of porphyrins were synthesised. Superoxide dismutase was impaired by light treatment independently of ALA exposure in activated lymphocytes and, to a lesser extent, in resting lymphocytes. PDT induced an antioxidant adaptive response in activated cells 19 h after irradiation, reflected as a net increase in GSHPx activity and a slight reversion of the catalase (CAT) activity already impaired by light treatment. PDT treatment of activated cells also produced a diminution in the GSH/GSSG ratio. Only activated cells are capable of developing an antioxidant adaptive response to PDT treatment.
Lasers in Medical Science | 2002
Christian Perotti; Adriana Casas; A.M. Del C. Batlle
Abstract.The exogenously stimulated formation of intracellularly generated protoporphyrin IX, a precursor of haem, is becoming one of the fastest developing areas in the field of photodynamic therapy (PDT). We tested the action of several free radical scavengers, amino acids, antioxidants and sulphur-containing compounds as protectors from photodamage induced by 5-aminolaevulinic acid (ALA)-mediated PDT, employing the LM2 cell line, derived from a mammary murine adenocarcinoma. We exposed the cells to different concentrations of the compounds, 24 h before PDT, during PDT, and 19 h after treatment. We defined the protection grade (PG) as the ratio between cell survival after ALA-PDT treatment in the presence of the protector and cell survival of ALA-PDT treatment alone. We found thatl -tryptophan (PG=9.2 at 2 mm ), reduced glutathione (GSH) (PG=5.8 at 0.8 mm ), N-acetyl-l -cysteine (PG=4.86 at 30 mm ), melatonin (PG=4.5 at 8 mm ) andl -methionine (PG=4.0 at 0.8 mm ) are the best protectors from PDT damage, followed byl -cysteine (PG=2.8 at 0.8 mm ), mannitol (PG=2.6 at 20 mm ) and glycine (PG=2.4 at 40 mm ) whereas oxidised glutathione and S-adenosyl-l -methionine do not exert any protection. We did not found any photoactive action of the protectors in absence of ALA. These results can be considered to modulate the photodamage induced by ALA-PDT.