Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Pilarsky is active.

Publication


Featured researches published by Christian Pilarsky.


Science | 2009

Inhibition of Hedgehog Signaling Enhances Delivery of Chemotherapy in a Mouse Model of Pancreatic Cancer

Kenneth P. Olive; Michael A. Jacobetz; Christian J. Davidson; Aarthi Gopinathan; Dominick J.O. McIntyre; Davina Jean Honess; Basetti Madhu; Mae Goldgraben; Meredith E. Caldwell; David Allard; Kristopher K. Frese; Gina M. DeNicola; Christine Feig; Chelsea Combs; Stephen P. Winter; Heather Ireland-Zecchini; Stefanie Reichelt; William J. Howat; Alex R. Chang; Mousumi Dhara; Lifu Wang; Felix Rückert; Robert Grützmann; Christian Pilarsky; Kamel Izeradjene; Sunil R. Hingorani; Pearl S. Huang; Susan E. Davies; William Plunkett; Merrill J. Egorin

Its All in the Delivery Pancreatic cancer is almost universally associated with a poor prognosis, in part because the tumors are resistant to chemotherapeutic drugs. Working with a mouse tumor model that displays many features of the human disease, Olive et al. (p. 1457, published online 21 May; see the Perspective by Olson and Hanahan) found that the tumors were poorly vascularized, a factor likely to impede drug delivery. Treatment of the mice with the chemotherapeutic drug gemcitabine in combination with a drug that depletes tumor-associated stromal tissue led to an increase in tumor vasculature, enhanced delivery of gemcitabine, and a delay in disease progression. Thus, drugs targeting the tumor stroma may merit investigation as a way to enhance the efficacy of conventional chemotherapy for pancreatic cancer. Pancreatic tumors are unresponsive to chemotherapy because their limited vasculature precludes efficient drug delivery. Pancreatic ductal adenocarcinoma (PDA) is among the most lethal human cancers in part because it is insensitive to many chemotherapeutic drugs. Studying a mouse model of PDA that is refractory to the clinically used drug gemcitabine, we found that the tumors in this model were poorly perfused and poorly vascularized, properties that are shared with human PDA. We tested whether the delivery and efficacy of gemcitabine in the mice could be improved by coadministration of IPI-926, a drug that depletes tumor-associated stromal tissue by inhibition of the Hedgehog cellular signaling pathway. The combination therapy produced a transient increase in intratumoral vascular density and intratumoral concentration of gemcitabine, leading to transient stabilization of disease. Thus, inefficient drug delivery may be an important contributor to chemoresistance in pancreatic cancer.


Nature | 2015

Whole genomes redefine the mutational landscape of pancreatic cancer

Nicola Waddell; Marina Pajic; Ann-Marie Patch; David K. Chang; Karin S. Kassahn; Peter Bailey; Amber L. Johns; David Miller; Katia Nones; Kelly Quek; Michael Quinn; Alan Robertson; Muhammad Z.H. Fadlullah; Timothy J. C. Bruxner; Angelika N. Christ; Ivon Harliwong; Senel Idrisoglu; Suzanne Manning; Craig Nourse; Ehsan Nourbakhsh; Shivangi Wani; Peter J. Wilson; Emma Markham; Nicole Cloonan; Matthew J. Anderson; J. Lynn Fink; Oliver Holmes; Stephen Kazakoff; Conrad Leonard; Felicity Newell

Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.


Nature | 2015

Glypican-1 identifies cancer exosomes and detects early pancreatic cancer

Sonia A. Melo; Linda B. Luecke; Christoph Kahlert; Agustín F. Fernández; Seth T. Gammon; Judith Kaye; Valerie S. LeBleu; Elizabeth A. Mittendorf; Juergen Weitz; Nuh N. Rahbari; Christoph Reissfelder; Christian Pilarsky; Mario F. Fraga; David Piwnica-Worms; Raghu Kalluri

Exosomes are lipid-bilayer-enclosed extracellular vesicles that contain proteins and nucleic acids. They are secreted by all cells and circulate in the blood. Specific detection and isolation of cancer-cell-derived exosomes in the circulation is currently lacking. Using mass spectrometry analyses, we identify a cell surface proteoglycan, glypican-1 (GPC1), specifically enriched on cancer-cell-derived exosomes. GPC1+ circulating exosomes (crExos) were monitored and isolated using flow cytometry from the serum of patients and mice with cancer. GPC1+ crExos were detected in the serum of patients with pancreatic cancer with absolute specificity and sensitivity, distinguishing healthy subjects and patients with a benign pancreatic disease from patients with early- and late-stage pancreatic cancer. Levels of GPC1+ crExos correlate with tumour burden and the survival of pre- and post-surgical patients. GPC1+ crExos from patients and from mice with spontaneous pancreatic tumours carry specific KRAS mutations, and reliably detect pancreatic intraepithelial lesions in mice despite negative signals by magnetic resonance imaging. GPC1+ crExos may serve as a potential non-invasive diagnostic and screening tool to detect early stages of pancreatic cancer to facilitate possible curative surgical therapy.


Clinical Chemistry | 2009

Circulating Methylated SEPT9 DNA in Plasma Is a Biomarker for Colorectal Cancer

Theo deVos; Reimo Tetzner; Fabian Model; Günter Weiss; Matthias Schuster; Jürgen Distler; Kathryn V. Steiger; Robert Grützmann; Christian Pilarsky; Jens K. Habermann; Phillip Fleshner; Benton Oubre; Robert H. Day; Andrew Sledziewski; Catherine Lofton-Day

BACKGROUND The presence of aberrantly methylated SEPT9 DNA in plasma is highly correlated with the occurrence of colorectal cancer. We report the development of a new SEPT9 biomarker assay and its validation in case-control studies. The development of such a minimally invasive blood-based test may help to reduce the current gap in screening coverage. METHODS A new SEPT9 DNA methylation assay was developed for plasma. The assay comprised plasma DNA extraction, bisulfite conversion of DNA, purification of bisulfite-converted DNA, quantification of converted DNA by real-time PCR, and measurement of SEPT9 methylation by real-time PCR. Performance of the SEPT9 assay was established in a study of 97 cases with verified colorectal cancer and 172 healthy controls as verified by colonoscopy. Performance based on predetermined algorithms was validated in an independent blinded study with 90 cases and 155 controls. RESULTS The SEPT9 assay workflow yielded 1.9 microg/L (CI 1.3-3.0) circulating plasma DNA following bisulfite conversion, a recovery of 45%-50% of genomic DNA, similar to yields in previous studies. The SEPT9 assay successfully identified 72% of cancers at a specificity of 93% in the training study and 68% of cancers at a specificity of 89% in the testing study. CONCLUSIONS Circulating methylated SEPT9 DNA, as measured in the new (m)SEPT9 assay, is a valuable biomarker for minimally invasive detection of colorectal cancer. The new assay is amenable to automation and standardized use in the clinical laboratory.


PLOS ONE | 2008

Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay.

Robert Grützmann; Béla Molnár; Christian Pilarsky; Jens K. Habermann; Peter M. Schlag; Hans Detlev Saeger; Stephan Miehlke; Thomas Stolz; Fabian Model; Uwe J. Roblick; Hans Peter Bruch; Rainer Koch; Volker Liebenberg; Theo deVos; Xiaoling Song; Robert H. Day; Andrew Sledziewski; Catherine Lofton-Day

Background Colorectal cancer (CRC) is the second leading cause of cancer deaths despite the fact that detection of this cancer in early stages results in over 90% survival rate. Currently less than 45% of at-risk individuals in the US are screened regularly, exposing a need for better screening tests. We performed two case-control studies to validate a blood-based test that identifies methylated DNA in plasma from all stages of CRC. Methodology/Principal Findings Using a PCR assay for analysis of Septin 9 (SEPT9) hypermethylation in DNA extracted from plasma, clinical performance was optimized on 354 samples (252 CRC, 102 controls) and validated in a blinded, independent study of 309 samples (126 CRC, 183 controls). 168 polyps and 411 additional disease controls were also evaluated. Based on the training study SEPT9-based classification detected 120/252 CRCs (48%) and 7/102 controls (7%). In the test study 73/126 CRCs (58%) and 18/183 control samples (10%) were positive for SEPT9 validating the training set results. Inclusion of an additional measurement replicate increased the sensitivity of the assay in the testing set to 72% (90/125 CRCs detected) while maintaining 90% specificity (19/183 for controls). Positive rates for plasmas from the other cancers (11/96) and non-cancerous conditions (41/315) were low. The rate of polyp detection (>1 cm) was ∼20%. Conclusions/Significance Analysis of SEPT9 DNA methylation in plasma represents a straightforward, minimally invasive method to detect all stages of CRC with potential to satisfy unmet needs for increased compliance in the screening population. Further clinical testing is warranted.


The Journal of Pathology | 2003

WIF1, a component of the Wnt pathway, is down‐regulated in prostate, breast, lung, and bladder cancer

Christoph Wissmann; Peter J. Wild; Simone Kaiser; Stefan Roepcke; Robert Stoehr; Matthias Woenckhaus; Glen Kristiansen; Jen‐Chih Hsieh; Ferdinand Hofstaedter; Arndt Hartmann; Ruth Knuechel; André Rosenthal; Christian Pilarsky

To detect novel Wnt‐pathway genes involved in tumourigenesis, this study analysed the RNA expression levels of 40 genes of the Wnt pathway by chip hybridization of microdissected matched pairs of 54 primary prostate carcinomas. Eleven genes showed greater than two‐fold differential expression in at least 10% of prostate cancers. Three of these genes encode extracellular components of the Wnt pathway (WNT2, WIF1, SFRP4); two are receptors (FZD4, FZD6); two belong to the intracellular signal cascade (DVL1, PPP2CB); one regulates transcription (TCF4); and three represent genes regulated by this pathway (CCND2, CD44, MYC). While SFRP4, FZD4, FZD6, DVL1, TCF4, and MYC are up‐regulated, WIF1, WNT2, PPP2CB, CCND2, and CD44 are down‐regulated in certain prostate cancer patients. Wnt inhibitory factor 1 (WIF1) and secreted frizzled related protein (SFRP4) showed the most significant aberrant expression at the RNA level. WIF1 was down‐regulated in 64% of primary prostate cancers, while SFRP4 was up‐regulated in 81% of the patients. Immunohistochemical analysis using a polyclonal antibody revealed strong cytoplasmic perinuclear WIF1 expression in normal epithelial cells of the prostate, breast, lung, and urinary bladder. Strong reduction of WIF1 protein expression was found in 23% of prostate carcinomas, but also in 60% of breast, 75% of non‐small cell lung (NSCLC), and 26% of bladder cancers analysed. No significant association between WIF1 down‐regulation and tumour stage or grade was observed for prostate, breast or non‐small cell lung carcinomas, indicating that loss of WIF1 expression may be an early event in tumourigenesis in these tissues. However, down‐regulation of WIF1 correlated with higher tumour stage in urinary bladder tumours (pTa versus pT1–pT4; p = 0.038). Copyright


Cancer Research | 2007

Foxp3 Expression in Pancreatic Carcinoma Cells as a Novel Mechanism of Immune Evasion in Cancer

Sebastian Hinz; Laia Pagerols-Raluy; Hans-Heinrich Oberg; Ole Ammerpohl; Sandra Grüssel; Bence Sipos; Robert Grützmann; Christian Pilarsky; Hendrik Ungefroren; Hans-Detlev Saeger; G. Klöppel; Dieter Kabelitz; Holger Kalthoff

The forkhead transcription factor Foxp3 is highly expressed in CD4+CD25+ regulatory T cells (Treg) and was recently identified as a key player in mediating their inhibitory functions. Here, we describe for the first time the expression and function of Foxp3 in pancreatic ductal adenocarcinoma cells and tumors. Foxp3 expression was induced by transforming growth factor-beta2 (TGF-beta2), but not TGF-beta1 stimulation in these cells, and was partially suppressed following antibody-mediated neutralization of TGF-beta2. The TGF-beta2 effect could be mimicked by ectopic expression of a constitutively active TGF-beta type I receptor/ALK5 mutant. Down-regulation of Foxp3 with small interfering RNA (siRNA) in pancreatic carcinoma cells resulted in the up-regulation of interleukin 6 (IL-6) and IL-8 expression, providing evidence for a negative transcriptional activity of Foxp3 also in these epithelial cells. Coculture of Foxp3-expressing tumor cells with naive T cells completely inhibited T-cell proliferation, but not activation, and this antiproliferative effect was partially abrogated following specific inhibition of Foxp3 expression. These findings indicate that pancreatic carcinoma cells share growth-suppressive effects with Treg and suggest that mimicking Treg function may represent a new mechanism of immune evasion in pancreatic cancer.


Journal of Cellular and Molecular Medicine | 2009

MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy

Monika Jung; Hans-Joachim Mollenkopf; Christina Grimm; Ina Wagner; Marco Albrecht; Tobias Waller; Christian Pilarsky; Manfred Johannsen; Carsten Stephan; Hans Lehrach; Wilfried Nietfeld; Thomas Rudel; Klaus Jung; Glen Kristiansen

MicroRNAs are short single‐stranded RNAs that are associated with gene regulation at the transcriptional and translational level. Changes in their expression were found in a variety of human cancers. Only few data are available on microRNAs in clear cell renal cell carcinoma (ccRCC). We performed genome‐wide expression profiling of microRNAs using microarray analysis and quantification of specific microRNAs by TaqMan real‐time RT‐PCR. Matched malignant and non‐malignant tissue samples from two independent sets of 12 and 72 ccRCC were profiled. The microarray‐based experiments identified 13 over‐expressed and 20 down‐regulated microRNAs in malignant samples. Expression in ccRCC tissue samples compared with matched non‐malignant samples measured by RT‐PCR was increased on average by 2.7‐ to 23‐fold for the hsa‐miR‐16, −452*, −224, −155 and −210, but decreased by 4.8‐ to 138‐fold for hsa‐miR‐200b, −363, −429, −200c, −514 and −141. No significant associations between these differentially expressed microRNAs and the clinico‐pathological factors tumour stage, tumour grade and survival rate were found. Nevertheless, malignant and non‐malignant tissue could clearly be differentiated by their microRNA profile. A combination of miR‐141 and miR‐155 resulted in a 97% overall correct classification of samples. The presented differential microRNA pattern provides a solid basis for further validation, including functional studies.


Cell | 2014

Mutant p53 Drives Pancreatic Cancer Metastasis through Cell-Autonomous PDGF Receptor β Signaling

Susann Weissmueller; Eusebio Manchado; Michael Saborowski; John P. Morris; Elvin Wagenblast; Carrie A. Davis; Sung-Hwan Moon; Neil T. Pfister; Darjus F. Tschaharganeh; Thomas Kitzing; Daniela Aust; Elke K. Markert; Jianmin Wu; Sean M. Grimmond; Christian Pilarsky; Carol Prives; Andrew V. Biankin; Scott W. Lowe

Missense mutations in the p53 tumor suppressor inactivate its antiproliferative properties but can also promote metastasis through a gain-of-function activity. We show that sustained expression of mutant p53 is required to maintain the prometastatic phenotype of a murine model of pancreatic cancer, a highly metastatic disease that frequently displays p53 mutations. Transcriptional profiling and functional screening identified the platelet-derived growth factor receptor b (PDGFRb) as both necessary and sufficient to mediate these effects. Mutant p53 induced PDGFRb through a cell-autonomous mechanism involving inhibition of a p73/NF-Y complex that represses PDGFRb expression in p53-deficient, noninvasive cells. Blocking PDGFRb signaling by RNA interference or by small molecule inhibitors prevented pancreatic cancer cell invasion in vitro and metastasis formation in vivo. Finally, high PDGFRb expression correlates with poor disease-free survival in pancreatic, colon, and ovarian cancer patients, implicating PDGFRb as a prognostic marker and possible target for attenuating metastasis in p53 mutant tumors.


The Journal of Pathology | 2005

Expression profiling of microdissected matched prostate cancer samples reveals CD166/MEMD and CD24 as new prognostic markers for patient survival

Glen Kristiansen; Christian Pilarsky; Christoph Wissmann; Simone Kaiser; Thomas Bruemmendorf; Stefan Roepcke; Edgar Dahl; Bernd Hinzmann; Thomas Specht; Janja Pervan; Carsten Stephan; Stefan A. Loening; Manfred Dietel; André Rosenthal

In order to screen for differentially expressed genes that might be useful in diagnosis or therapy of prostate cancer we have used a custom made Affymetrix GeneChip containing 3950 cDNA fragments. Expression profiles were obtained from 42 matched pairs of mRNAs isolated from microdissected malignant and benign prostate tissues. Applying three different bioinformatic approaches to define differential gene expression, we found 277 differentially expressed genes, of which 98 were identified by all three methods. Fourteen per cent of these genes were not found in other expression studies, which were based on bulk tissue. Resultant candidate genes were further validated by quantitative RT‐PCR, mRNA in situ hybridization and immunohistochemistry. AGR2 was over‐expressed in 89% of prostate carcinomas, but did not have prognostic significance. Immunohistologically detected over‐expression of MEMD and CD24 was identified in 86% and 38.5% of prostate carcinomas respectively, and both were predictive of PSA relapse. Combined marker analysis using MEMD and CD24 expression proved to be an independent prognostic factor (RR = 4.7, p = 0.006) in a Cox regression model, and was also superior to conventional markers. This combination of molecular markers thus appears to allow improved prediction of patient prognosis, but should be validated in larger studies. Copyright

Collaboration


Dive into the Christian Pilarsky's collaboration.

Top Co-Authors

Avatar

Robert Grützmann

Martin Luther University of Halle-Wittenberg

View shared research outputs
Top Co-Authors

Avatar

André Rosenthal

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Specht

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans-Detlev Saeger

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Felix Rückert

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Aust

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge