Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Prenant is active.

Publication


Featured researches published by Christian Prenant.


Brain Behavior and Immunity | 2011

Brain inflammation is induced by co-morbidities and risk factors for stroke

Caroline Drake; Herve Boutin; Matthew Jones; Adam Denes; Barry W. McColl; Johann Selvarajah; Sharon Hulme; Rachel F. Georgiou; Rainer Hinz; Alexander Gerhard; Andy Vail; Christian Prenant; Peter Julyan; Renaud Maroy; Gavin Brown; Alison Smigova; Karl Herholz; Michael Kassiou; Dc Crossman; Sheila E. Francis; Spencer D. Proctor; James C. Russell; Stephen J. Hopkins; Pippa Tyrrell; Nancy J. Rothwell; Stuart M. Allan

Highlights ► Risk factors for stroke include atherosclerosis, obesity, diabetes and hypertension. ► Stroke risk factors are associated with peripheral inflammation. ► Corpulent rats and atherogenic mice show increased inflammation in the brain. ► Pilot data show that patients at risk of stroke may also develop brain inflammation. ► Chronic peripheral inflammation can drive inflammatory changes in the brain.


PLOS ONE | 2013

[18F]DPA-714: Direct Comparison with [11C]PK11195 in a Model of Cerebral Ischemia in Rats

Herve Boutin; Christian Prenant; Renaud Maroy; James Galea; Andrew Greenhalgh; Alison Smigova; Christopher Cawthorne; Peter J Julyan; Shane M. Wilkinson; Samuel D. Banister; Gavin Brown; Karl Herholz; Michael Kassiou; Nancy J. Rothwell

Purpose Neuroinflammation is involved in several brain disorders and can be monitored through expression of the translocator protein 18 kDa (TSPO) on activated microglia. In recent years, several new PET radioligands for TSPO have been evaluated in disease models. [18F]DPA-714 is a TSPO radiotracer with great promise; however results vary between different experimental models of neuroinflammation. To further examine the potential of [18F]DPA-714, it was compared directly to [11C]PK11195 in experimental cerebral ischaemia in rats. Methods Under anaesthesia, the middle cerebral artery of adult rats was occluded for 60 min using the filament model. Rats were allowed recovery for 5 to 7 days before one hour dynamic PET scans with [11C]PK11195 and/or [18F]DPA-714 under anaesthesia. Results Uptake of [11C]PK11195 vs [18F]DPA-714 in the ischemic lesion was similar (core/contralateral ratio: 2.84±0.67 vs 2.28±0.34 respectively), but severity of the brain ischemia and hence ligand uptake in the lesion appeared to vary greatly between animals scanned with [11C]PK11195 or with [18F]DPA-714. To solve this issue of inter-individual variability, we performed a direct comparison of [11C]PK11195 and [18F]DPA-714 by scanning the same animals sequentially with both tracers within 24 h. In this direct comparison, the core/contralateral ratio (3.35±1.21 vs 4.66±2.50 for [11C]PK11195 vs [18F]DPA-714 respectively) showed a significantly better signal-to-noise ratio (1.6 (1.3–1.9, 95%CI) fold by linear regression) for [18F]DPA-714. Conclusions In a clinically relevant model of neuroinflammation, uptake for both radiotracers appeared to be similar at first, but a high variability was observed in our model. Therefore, to truly compare tracers in such models, we performed scans with both tracers in the same animals. By doing so, our result demonstrated that [18F]DPA-714 displayed a higher signal-to-noise ratio than [11C]PK11195. Our results suggest that, with the longer half-life of [18F] which facilitates distribution of the tracer across PET centre, [18F]DPA-714 is a good alternative for TSPO imaging.


British Journal of Pharmacology | 2011

Biodistribution, pharmacokinetics and metabolism of interleukin-1 receptor antagonist (IL-1RA) using [18F]-IL1RA and PET imaging in rats

Christopher Cawthorne; Christian Prenant; Alison Smigova; Peter J Julyan; Renaud Maroy; Karl Herholz; Nancy J. Rothwell; Herve Boutin

Positron emission tomography (PET) has the potential to improve our understanding of the preclinical pharmacokinetics and metabolism of therapeutic agents, and is easily translated to clinical studies in humans. However, studies involving proteins radiolabelled with clinically relevant PET isotopes are currently limited. Here we illustrate the potential of PET imaging in a preclinical study of the biodistribution and metabolism of 18F‐labelled IL‐1 receptor antagonist ([18F]IL‐1RA) using a novel [18F]‐radiolabelling technique.


Applied Radiation and Isotopes | 2010

Radiolabeling with fluorine-18 of a protein, interleukin-1 receptor antagonist

Christian Prenant; Christopher Cawthorne; Michael Fairclough; Nancy J. Rothwell; Herve Boutin

IL-1RA is a naturally occurring antagonist of the pro-inflammatory cytokine interleukin-1 (IL-1) with high therapeutic promise, but its pharmacokinetic remains poorly documented. In this report, we describe the radiolabeling of recombinant human interleukin-1 receptor antagonist (rhIL-1RA) with fluorine-18 to allow pharmacokinetic studies by positron emission tomography (PET). rhIL-1RA was labeled randomly by reductive alkylation of free amino groups (the epsilon-amino group of lysine residues or amino-terminal residues) using [(18)F]fluoroacetaldehyde under mild reaction conditions. Radiosyntheses used a remotely controlled experimental rig within 100min and the radiochemical yield was in the range 7.1-24.2% (decay corrected, based on seventeen syntheses). We showed that the produced [(18)F]fluoroethyl-rhIL-1ra retained binding specificity by conducting an assay on rat brain sections, allowing its pharmakokinetic study using PET.


Journal of Labelled Compounds and Radiopharmaceuticals | 2016

A new technique for the radiolabelling of mixed leukocytes with zirconium‐89 for inflammation imaging with positron emission tomography

Michael Fairclough; Christian Prenant; Beverley L. Ellis; Herve Boutin; Adam McMahon; Gavin Brown; Pietro Locatelli; Anthony K.P. Jones

Mixed leukocyte (white blood cells [WBCs]) trafficking using positron emission tomography (PET) is receiving growing interest to diagnose and monitor inflammatory conditions. PET, a high sensitivity molecular imaging technique, allows precise quantification of the signal produced from radiolabelled moieties. We have evaluated a new method for radiolabelling WBCs with either zirconium‐89 (89Zr) or copper‐64 (64Cu) for PET imaging. Chitosan nanoparticles (CNs) were produced by a process of ionotropic gelation and used to deliver radiometals into WBCs. Experiments were carried out using mixed WBCs freshly isolated from whole human blood. WBCs radiolabelling efficiency was higher with [89Zr]‐loaded CN (76.8 ± 9.6% (n = 12)) than with [64Cu]‐loaded CN (26.3 ± 7.0 % (n = 7)). [89Zr]‐WBCs showed an initial loss of 28.4 ± 5.8% (n = 2) of the radioactivity after 2 h. This loss was then followed by a plateau as 89Zr remains stable in the cells. [64Cu]‐WBCs showed a loss of 85 ± 6% (n = 3) of the radioactivity after 1 h, which increased to 96 ± 6% (n = 3) loss after 3 h. WBC labelling with [89Zr]‐loaded CN showed a fast kinetic of leukocyte association, high labelling efficiency and a relatively good retention of the radioactivity. This method using 89Zr has a potential application for PET imaging of inflammation.


Applied Radiation and Isotopes | 2016

Development & Automation of a novel [18F]F prosthetic group, 2-[18F]-fluoro-3-pyridinecarboxaldehyde, and its application to an amino(oxy)-functionalised Aβ peptide

Olivia Morris; Jamil Gregory; Manikandan Kadirvel; Fiona Henderson; A. Blykers; Adam McMahon; Mark Taylor; David Allsop; Stuart M. Allan; Julian Grigg; Herve Boutin; Christian Prenant

2-[18F]-Fluoro-3-pyridinecarboxaldehyde ([18F]FPCA) is a novel, water-soluble prosthetic group. Its radiochemistry has been developed and fully-automated for application in chemoselective radiolabelling of amino(oxy)-derivatised RI-OR2-TAT peptide, (Aoa-k)-RI-OR2-TAT, using a GE TRACERlab FX-FN. RI-OR2-TAT is a brain-penetrant, retro-inverso peptide that binds to amyloid species associated with Alzheimers Disease. Radiolabelled (Aoa-k)-RI-OR2-TAT was reproducibly synthesised and the product of the reaction with FPCA has been fully characterised. In-vivo biodistribution of [18F]RI-OR2-TAT has been measured in Wistar rats.


Nuclear Medicine and Biology | 1996

Feasibility of labeled α-acetamido-aminoisobutyric acid as new tracer compound for kinetic labeling of neutral amino acid transport: Preparation of α-(N-[1-11C]Acetyl)- and α-(N-[1-14C]Acetyl)-aminoisobutyric acid

Christian Prenant; Annemarie Theobald; Uwe Haberkorn; Matthias E. Bellemann; Klaus Weber; Franz Oberdorfer

Abstract The nonphysiological, nonracemic, branched-chain α-acetamido-aminoisobutyric acid was labeled with the carbon isotope 11C with the intention to use it in conjunction with positron emission tomography (PET) to measure the kinetics of amino acid transport in vivo. It was produced by the reaction of the novel 11C-precursor N-[1-11C]acetylpyridinium chloride with α-aminoisobutyric acid. Typically, 2 GBq of α-(N-[1-11C]acetyl)-aminoisobutyric acid were isolated with a specific activity of 12 to 20 GBq · μmol−1 at the time of application, and with a radiochemical purity of >98%. The chemical identity of α-(N-[1-11C]acetyl)-aminoisobutyric acid was confirmed by comparison with α-(N-[1-14C]acetyl)-aminoisobutyric acid that was independently prepared by a standard acetylation procedure of α-aminoisobutyric acid using [1-14C]acetic anhydride. In vivo, both labeled substrates were not metabolized. In cell-culture experiments, 84% of the substrate entered the cells by the sodium-dependent amino acid transport system A, whereas 16% was taken up by the sodium-independent system. The uptake of the radiotracer was measured 20 min and 40 min postinjection in tumor-bearing male Copenhagen rats for assessment of its in vivo biodistribution.


Applied Radiation and Isotopes | 2017

Development of a method for the preparation of zirconium-89 radiolabelled chitosan nanoparticles as an application for leukocyte trafficking with positron emission tomography

Michael Fairclough; Beverley L. Ellis; Herve Boutin; Anthony K.P. Jones; Adam McMahon; Saba Alzabin; Arianna Gennari; Christian Prenant

Positron Emission Tomography is an attractive imaging modality for monitoring the migration of cells to pathological tissue. We evaluated a new method for radiolabelling leukocytes with zirconium-89 (89Zr) using chitosan nanoparticles (CN, Z-average size 343 ± 210nm and zeta potential +46 ± 4mV) as the carrier. We propose that cell uptake of 89Zr-loaded CN occurred in a two-step process; cell membrane interaction with 89Zr-loaded CN was followed by a slower cell internalisation step.


Journal of Labelled Compounds and Radiopharmaceuticals | 2017

In vivo characterisation of a therapeutically relevant self-assembling 18F-labelled β-sheet forming peptide and its hydrogel using positron emission tomography

Olivia Morris; Mohamed A. Elsawy; Michael Fairclough; Kaye J. Williams; Adam McMahon; Julian Grigg; Duncan Forster; Aline F. Miller; Alberto Saiani; Christian Prenant

Positron emission tomography (PET) and fluorescence labelling have been used to assess the pharmacokinetics, biodistribution and eventual fate of a hydrogel‐forming nonapeptide, FEFKFEFKK (F9), in healthy mice, using 18F‐labelled and fluorescein isothiocyanate (FITC)‐labelled F9 analogues. F9 was site‐specifically radiolabelled with 2‐[18F]fluoro‐3‐pyridinecarboxaldehyde ([18F]FPCA) via oxime bond formation. [18F]FPCA‐F9 in vivo fate was evaluated both as a solution, following intravenous administration, and as a hydrogel when subcutaneously injected. The behaviour of FITC‐F9 hydrogel was assessed following subcutaneous injection. [18F]FPCA‐F9 demonstrated high plasma stability and primarily renal excretion; [18F]FPCA‐F9 when in solution and injected into the bloodstream displayed prompt bladder uptake (53.4 ± 16.6 SUV at 20 minutes postinjection) and rapid renal excretion, whereas [18F]FPCA‐F9 hydrogel, formed by co‐assembly of [18F]FPCA‐F9 monomer with unfunctionalised F9 peptide and injected subcutaneously, showed gradual bladder accumulation of hydrogel fragments (3.8 ± 0.4 SUV at 20 minutes postinjection), resulting in slower renal excretion. Gradual disaggregation of the F9 hydrogel from the site of injection was monitored using FITC‐F9 hydrogel in healthy mice (60 ± 3 over 96 hours), indicating a biological half‐life between 1 and 4 days. The in vivo characterisation of F9, both as a gel and a solution, highlights its potential as a biomaterial.


Journal of Labelled Compounds and Radiopharmaceuticals | 2016

Automation of [18F]fluoroacetaldehyde synthesis: application to a recombinant human interleukin-1 receptor antagonist (rhIL-1RA)

Olivia Morris; Adam McMahon; Herve Boutin; Julian Grigg; Christian Prenant

[18F]Fluoroacetaldehyde is a biocompatible prosthetic group that has been implemented pre‐clinically using a semi‐automated remotely controlled system. Automation of radiosyntheses permits use of higher levels of [18F]fluoride whilst minimising radiochemist exposure and enhancing reproducibility. In order to achieve full‐automation of [18F]fluoroacetaldehyde peptide radiolabelling, a customised GE Tracerlab FX‐FN with fully programmed automated synthesis was developed. The automated synthesis of [18F]fluoroacetaldehyde is carried out using a commercially available precursor, with reproducible yields of 26% ± 3 (decay‐corrected, n = 10) within 45 min. Fully automated radiolabelling of a protein, recombinant human interleukin‐1 receptor antagonist (rhIL‐1RA), with [18F]fluoroacetaldehyde was achieved within 2 h. Radiolabelling efficiency of rhIL‐1RA with [18F]fluoroacetaldehyde was confirmed using HPLC and reached 20% ± 10 (n = 5). Overall RCY of [18F]rhIL‐1RA was 5% ± 2 (decay‐corrected, n = 5) within 2 h starting from 35 to 40 GBq of [18F]fluoride. Specific activity measurements of 8.11–13.5 GBq/µmol were attained (n = 5), a near three‐fold improvement of those achieved using the semi‐automated approach. The strategy can be applied to radiolabelling a range of peptides and proteins with [18F]fluoroacetaldehyde analogous to other aldehyde‐bearing prosthetic groups, yet automation of the method provides reproducibility thereby aiding translation to Good Manufacturing Practice manufacture and the transformation from pre‐clinical to clinical production.

Collaboration


Dive into the Christian Prenant's collaboration.

Top Co-Authors

Avatar

Herve Boutin

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Adam McMahon

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gavin Brown

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Olivia Morris

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison Smigova

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge