Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian R. Kowol is active.

Publication


Featured researches published by Christian R. Kowol.


Journal of Medicinal Chemistry | 2009

Impact of Metal Coordination on Cytotoxicity of 3-Aminopyridine-2-carboxaldehyde Thiosemicarbazone (Triapine) and Novel Insights into Terminal Dimethylation

Christian R. Kowol; Robert Trondl; Petra Heffeter; Vladimir B. Arion; Michael A. Jakupec; Alexander Roller; Markus Galanski; Walter Berger; Bernhard K. Keppler

The first metal complexes of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (Triapine) were synthesized. Triapine was prepared by a novel three-step procedure in 64% overall yield. In addition, a series of related ligands, namely, 2-formylpyridine thiosemicarbazone, 2-acetylpyridine thiosemicarbazone, 2-pyridineformamide thiosemicarbazone, and their N(4)-dimethylated derivatives (including the N(4)-dimethylated analogue of Triapine) were prepared, along with their corresponding gallium(III) and iron(III) complexes with the general formula [M(L)(2)](+), where HL is the respective thiosemicarbazone. The compounds were characterized by elemental analysis, (1)H and (13)C NMR, IR and UV-vis spectroscopies, mass spectrometry, and cyclic voltammetry. In addition, Triapine and its iron(III) and gallium(III) complexes were studied by X-ray crystallography. All ligands and complexes were tested for their in vitro antiproliferative activity in two human cancer cell lines (41M and SK-BR-3), and structure-activity relationships were established. In general, the coordination to gallium(III) increased the cytotoxicity while the iron(III) complexes show reduced cytotoxic activity compared to the metal-free thiosemicarbazones. Selected compounds were investigated for the capacity of inhibiting ribonucleotide reductase by incorporation of (3)H-cytidine into DNA.


Journal of Inorganic Biochemistry | 2011

Tuning of lipophilicity and cytotoxic potency by structural variation of anticancer platinum(IV) complexes.

Michael R. Reithofer; Anna K. Bytzek; Seied M. Valiahdi; Christian R. Kowol; Michael Groessl; Christian G. Hartinger; Michael A. Jakupec; Markus Galanski; Bernhard K. Keppler

A series of bis(carboxylato)dichlorido(ethane-1,2-diamine)platinum(IV) compounds with IC(50) values ranging between 142 μM and 18 nM was investigated with respect to their lipophilicity (by the shake flask method as well as microemulsion electrokinetic chromatography), reduction potential, as well as their cellular accumulation in cancer cells in vitro. In general, the antiproliferative properties of the complexes correlated with their lipophilicity as well as their accumulation, whereas differences in antiproliferative potency could not be explained by reduction potentials since they do not vary significantly within the investigated series of compounds. Only minor effects for complexes featuring polar end groups were detected.


Journal of Biological Inorganic Chemistry | 2012

Mechanisms underlying reductant-induced reactive oxygen species formation by anticancer copper(II) compounds

Christian R. Kowol; Petra Heffeter; Walter Miklos; Lars Gille; Robert Trondl; Loredana Cappellacci; Walter Berger; Bernhard K. Keppler

Intracellular generation of reactive oxygen species (ROS) via thiol-mediated reduction of copper(II) to copper(I) has been assumed as the major mechanism underlying the anticancer activity of copper(II) complexes. The aim of this study was to compare the anticancer potential of copper(II) complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone; currently in phase II clinical trials) and its terminally dimethylated derivative with that of 2-formylpyridine thiosemicarbazone and that of 2,2′-bipyridyl-6-carbothioamide. Experiments on generation of oxidative stress and the influence of biologically relevant reductants (glutathione, ascorbic acid) on the anticancer activity of the copper complexes revealed that reductant-dependent redox cycling occurred mainly outside the cells, leading to generation and dismutation of superoxide radicals resulting in cytotoxic amounts of H2O2. However, without extracellular reductants only weak intracellular ROS generation was observed at IC50 levels, suggesting that cellular thiols are not involved in copper-complex-induced oxidative stress. Taken together, thiol-induced intracellular ROS generation might contribute to the anticancer activity of copper thiosemicarbazone complexes but is not the determining factor.


Journal of Inorganic Biochemistry | 2011

Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): A combined experimental and theoretical study

Ana Popović-Bijelić; Christian R. Kowol; Maria E. S. Lind; Jinghui Luo; Fahmi Himo; Éva A. Enyedy; Vladimir B. Arion; Astrid Gräslund

Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone, 3-AP) is currently the most promising chemotherapeutic compound among the class of α-N-heterocyclic thiosemicarbazones. Here we report further insights into the mechanism(s) of anticancer drug activity and inhibition of mouse ribonucleotide reductase (RNR) by Triapine. In addition to the metal-free ligand, its iron(III), gallium(III), zinc(II) and copper(II) complexes were studied, aiming to correlate their cytotoxic activities with their effects on the diferric/tyrosyl radical center of the RNR enzyme in vitro. In this study we propose for the first time a potential specific binding pocket for Triapine on the surface of the mouse R2 RNR protein. In our mechanistic model, interaction with Triapine results in the labilization of the diferric center in the R2 protein. Subsequently the Triapine molecules act as iron chelators. In the absence of external reductants, and in presence of the mouse R2 RNR protein, catalytic amounts of the iron(III)-Triapine are reduced to the iron(II)-Triapine complex. In the presence of an external reductant (dithiothreitol), stoichiometric amounts of the potently reactive iron(II)-Triapine complex are formed. Formation of the iron(II)-Triapine complex, as the essential part of the reaction outcome, promotes further reactions with molecular oxygen, which give rise to reactive oxygen species (ROS) and thereby damage the RNR enzyme. Triapine affects the diferric center of the mouse R2 protein and, unlike hydroxyurea, is not a potent reductant, not likely to act directly on the tyrosyl radical.


Chemical Communications | 2013

Maleimide-functionalised platinum(IV) complexes as a synthetic platform for targeted drug delivery

Verena Pichler; Josef Mayr; Petra Heffeter; Orsolya Dömötör; Éva A. Enyedy; Gerrit Hermann; Diana Groza; Gunda Köllensperger; Markus Galanksi; Walter Berger; Bernhard K. Keppler; Christian R. Kowol

Maleimide-functionalised Pt(IV) complexes with highly selective binding properties to thiol groups were synthesised as precursors for binding of thiol-containing tumour-targeting molecules like human serum albumin.


Dalton Transactions | 2012

Novel tetracarboxylatoplatinum(IV) complexes as carboplatin prodrugs.

Hristo P. Varbanov; Seied M. Valiahdi; Christian R. Kowol; Michael A. Jakupec; Markus Galanski; Bernhard K. Keppler

It is widely accepted that platinum(IV) complexes act as prodrugs and have to be activated by reduction to the respective platinum(II) analogs. Recently it could be shown that introduction of lipophilic carboxylato ligands in the axial position leads to diaminedichloridoplatinum(IV) compounds with exceptionally high cytotoxicity. With the aim of improving the antiproliferative properties of carboplatin, a series of twenty-one novel Pt(IV) complexes, featuring the equatorial ligand sphere of carboplatin as well as lipophilic axial carboxylato ligands, was synthesized. In depth characterization is based on elemental analysis, ESI-MS, ATR-IR, and multinuclear ((1)H, (13)C, (15)N, and (195)Pt) NMR spectroscopy. Their cytotoxic activity in four cell lines (CH1, SK-OV-3, SW480, and A549), lipophilicity, electrochemistry and additionally the rate of reduction in the presence of ascorbic acid were investigated. In contrast to analogous diaminedicarboxylatodichloridoplatinum(IV) compounds, the cytotoxicity of novel diaminetetracarboxylato counterparts could not substantially be increased by simply enhancing their lipophilic character. It seems that not only the reduction potential, but also the rate of reduction has a tremendous influence on the cytotoxic properties. This has to be taken into account for the development of novel anticancer platinum(IV) agents.


Dalton Transactions | 2011

Interaction of Triapine and related thiosemicarbazones with iron(III)/(II) and gallium(III): A comparative solution equilibrium study

Éva A. Enyedy; Michael F. Primik; Christian R. Kowol; Vladimir B. Arion; Tamás Kiss; Bernhard K. Keppler

Stoichiometry and stability of Ga(III), Fe(III), Fe(II) complexes of Triapine and five related α-N heterocyclic thiosemicarbazones with potential antitumor activity have been determined by pH-potentiometry, UV-vis spectrophotometry, (1)H NMR spectroscopy, and spectrofluorimetry in aqueous solution (with 30% DMSO), together with the characterization of the proton dissociation processes. Additionally, the redox properties of the iron complexes were studied by cyclic voltammetry at various pH values. Formation of high stability bis-ligand complexes was found in all cases, which are predominant at physiological pH with Fe(III)/Fe(II), whilst only at the acidic pH range with Ga(III). The results show that among the thiosemicarbazones with various substituents the N-terminal dimethylation does not exert a measurable effect on the redox potential, but has the highest impact on the stability of the complexes as well as the cytotoxicity, especially in the absence of a pyridine-NH(2) group in the molecule. In addition the fluorescence properties of the ligands in aqueous solution and their changes caused by Ga(III) were studied.


Inorganic Chemistry | 2008

An electrochemical study of antineoplastic gallium, iron and ruthenium complexes with redox noninnocent α-N-heterocyclic chalcogensemicarbazones

Christian R. Kowol; Erwin Reisner; Ion Chiorescu; Vladimir B. Arion; Markus Galanski; Dirk V. Deubel; Bernhard K. Keppler

The electrochemical properties of a series of alpha-N-heterocyclic chalcogensemicarbazones (HL), namely, thiosemicarbazones, selenosemicarbazones, and semicarbazones, and their gallium(III), iron(III), and ruthenium(III) complexes with the general formula [ML(2)][Y] (M = Ga, Fe or Ru; Y = PF(6)(-), NO(3)(-), or FeCl(4)(-)) were studied by cyclic voltammetry. The novel compounds were characterized by elemental analysis, a number of spectroscopic methods (NMR, UV-vis, IR), mass spectrometry and by X-ray crystallography. All complexes show several, mostly reversible, redox waves attributable to the reduction of the noninnocent chalcogensemicarbazone ligands at lower potentials (<-0.4 V vs NHE) than the metal-centered iron or ruthenium redox waves (>0 V vs NHE) in organic electrolyte solutions. The cyclic voltammograms of the gallium complexes display at least two consecutive reversible one-electron reduction waves. These reductions are shifted by approximately 0.6 V to lower potentials in the corresponding iron and ruthenium complexes. The electrochemical, chemical, and spectroscopic data indicate that the ligand-centered reduction takes place at the CH(3)CN double bond. Quantum chemical calculations on the geometric and electronic structures of 2-acetylpyridine (4)N,(4)N-dimethylthiosemicarbazone (HL(B)), the corresponding metal complexes [Ga(L(B))(2)](+) and [Fe(II)(L(B))(2)], and the one-electron reduction product for each of these species support the assignment of the reduction site and elucidate the observed order of the ligand-centered redox potentials, E(1/2)([Fe(II)(L)(2)]) < E(1/2)(HL) < E(1/2)([Ga(L)(2)](+)). The influence of water on the redox potentials of the complexes is reported and the physiological relevance of the electrochemical data for cytotoxicity as well as for ribonucleotide reductase inhibitory capacity are discussed.


Inorganic Chemistry | 2008

Synthesis and reactivity of the aquation product of the antitumor complex trans-[Ru(III)Cl4(indazole)2]-.

Berta Cebrián‐Losantos; Erwin Reisner; Christian R. Kowol; Alexander Roller; Sergiu Shova; Vladimir B. Arion; Bernhard K. Keppler

Aquation of the investigational anticancer drug trans-[Ru(III)Cl4(Hind)2](-) (1, KP1019) results in the formation of mer,trans-[Ru(III)Cl3(Hind)2(H2O)] (2), which was isolated in high yield (85%) and characterized by spectroscopic methods and X-ray crystallography. Dissolution of 2 in acetone, led to its dimerization into [Ru(III)2(mu-Cl)2Cl4(Hind)4] x 2 (Me)2CO (3) in 79% yield, with release of two water molecules. Complex 2 reacts readily with nucleophilic organic molecules, viz., methanol or dimethyl sulfide, at room temperature by replacement of the aqua ligand to give mer,trans-[Ru(III)Cl3(Hind)2(MeOH)] (4) and mer,trans-[Ru(III)Cl3(Hind)2(Me2S)] (5) in 58 and 64% yield, respectively. By reaction of 2 with DMSO at room temperature or dimethyl sulfide at elevated temperatures trans,trans,trans-[Ru(II)Cl2(Hind)2(Me2S)2] (6) and trans,trans,trans-[Ru(II)Cl2(Hind)2(S-DMSO)2] (7) were prepared in 64 and 75% yield, respectively. Dissolution of 2 in acetonitrile or benzonitrile gave rise to mer,trans-[Ru(III)Cl3(Hind)(HNC(Me)ind)] (8a), mer,trans-[Ru(III)Cl3(Hind)(HNC(Ph)ind)] (8b), and trans,trans-[Ru(III)Cl2(HNC(Me)ind)2]Cl (9) in 67, 50, and 23% yield, respectively, upon metal-assisted iminoacylation of indazole, which is unprecedented for ruthenium(III). Furthermore, complex 2 reacts with the DNA-model bases 9-methyladenine (9-meade) and N6,N6-dimethyladenine (6-me2ade) to yield mer,trans-[Ru(III)Cl3(Hind)2(9-meade)] (10) and mer,trans-[Ru(III)Cl3(Hind)2(6-me2ade)] (11) with the purine bases bound to the Ru(III) center via N7 and N3, respectively. Complex 11 represents the first ruthenium complex in which the coordination of the purine ligand N6,N6-dimethyladenine occurs via N3. In addition, the polymer [Na(EtOAc)2Ru(III)(mu-Cl)4(Hind)2]n (12) was crystallized from ethyl acetate/diethyl ether solutions of Na[trans-Ru(III)Cl4(Hind)2] x 1.5 H2O (1a). The reported complexes were characterized by elemental analysis, IR and UV-vis spectroscopy, ESI mass spectrometry, cyclic voltammetry, and X-ray crystallography. Electrochemical investigations give insight into the mechanistic details of the solvolytic behavior of complex 2. The lability of the aqua ligand in 2 suggests that this complex is a potential active species responsible for the high antitumor activity of trans-[Ru(III)Cl4(Hind)2](-).


Angewandte Chemie | 2014

Tumor-Targeting of EGFR Inhibitors by Hypoxia-Mediated Activation†

Claudia Karnthaler‐Benbakka; Diana Groza; Kushtrim Kryeziu; Verena Pichler; Alexander Roller; Walter Berger; Petra Heffeter; Christian R. Kowol

The development of receptor tyrosine-kinase inhibitors (TKIs) was a major step forward in cancer treatment. However, the therapy with TKIs is limited by strong side effects and drug resistance. The aim of this study was the design of novel epidermal growth factor receptor (EGFR) inhibitors that are specifically activated in malignant tissue. Thus, a Co(III) -based prodrug strategy for the targeted release of an EGFR inhibitor triggered by hypoxia in the solid tumor was used. New inhibitors with chelating moieties were prepared and tested for their EGFR-inhibitory potential. The most promising candidate was coupled to Co(III) and the biological activity tested in cell culture. Indeed, hypoxic activation and subsequent EGFR inhibition was proven. Finally, the compound was tested in vivo, also revealing potent anticancer activity.

Collaboration


Dive into the Christian R. Kowol's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petra Heffeter

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Walter Berger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge