Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Rolf is active.

Publication


Featured researches published by Christian Rolf.


Bulletin of the American Meteorological Society | 2017

ML-CIRRUS - The airborne experiment on natural cirrus and contrail cirrus with the high-altitude long-range research aircraft HALO

Christiane Voigt; Ulrich Schumann; Andreas Minikin; Ahmed Abdelmonem; Armin Afchine; Stephan Borrmann; Maxi Boettcher; Bernhard Buchholz; Luca Bugliaro; Anja Costa; Joachim Curtius; Maximilian Dollner; Andreas Dörnbrack; V. Dreiling; Volker Ebert; André Ehrlich; Andreas Fix; Linda Forster; Fabian Frank; Daniel Fütterer; Andreas Giez; Kaspar Graf; J.-U. Grooß; Silke Groß; Katharina Heimerl; Bernd Heinold; Tilman Hüneke; Emma Järvinen; Tina Jurkat; Stefan Kaufmann

AbstractThe Midlatitude Cirrus experiment (ML-CIRRUS) deployed the High Altitude and Long Range Research Aircraft (HALO) to obtain new insights into nucleation, life cycle, and climate impact of natural cirrus and aircraft-induced contrail cirrus. Direct observations of cirrus properties and their variability are still incomplete, currently limiting our understanding of the clouds’ impact on climate. Also, dynamical effects on clouds and feedbacks are not adequately represented in today’s weather prediction models.Here, we present the rationale, objectives, and selected scientific highlights of ML-CIRRUS using the G-550 aircraft of the German atmospheric science community. The first combined in situ–remote sensing cloud mission with HALO united state-of-the-art cloud probes, a lidar and novel ice residual, aerosol, trace gas, and radiation instrumentation. The aircraft observations were accompanied by remote sensing from satellite and ground and by numerical simulations.In spring 2014, HALO performed 16 f...


Earth’s Future | 2016

The need for accurate long‐term measurements of water vapor in the upper troposphere and lower stratosphere with global coverage

Rolf Müller; A. Kunz; D. F. Hurst; Christian Rolf; Martina Krämer; Martin Riese

Water vapor is the most important greenhouse gas in the atmosphere although changes in carbon dioxide constitute the “control knob” for surface temperatures. While the latter fact is well recognized, resulting in extensive space-borne and ground-based measurement programs for carbon dioxide as detailed in the studies by Keeling et al. (1996), Kuze et al. (2009), and Liu et al. (2014), the need for an accurate characterization of the long-term changes in upper tropospheric and lower stratospheric (UTLS) water vapor has not yet resulted in sufficiently extensive long-term international measurement programs (although first steps have been taken). Here, we argue for the implementation of a long-term balloon-borne measurement program for UTLS water vapor covering the entire globe that will likely have to be sustained for hundreds of years.


Atmospheric Measurement Techniques Discussions | 2017

Ice particle sampling from aircraft - influence of the probing position on the ice water content

Armin Afchine; Christian Rolf; Anja Costa; N. Spelten; Martin Riese; Bernhard Buchholz; Volker Ebert; Romy Heller; Stefan Kaufmann; Andreas Minikin; Christiane Voigt; M. Zöger; Jessica Smith; Paul Lawson; Alexey Lykov; Sergey Khaykin; Martina Krämer

The ice water content (IWC) of cirrus clouds is an essential parameter determining their radiative properties and thus is important for climate simulations. Therefore, for a reliable measurement of IWC on board of research aircraft, it is important to carefully design the ice crystal sampling and measuring devices. During the HALO field campaign ML-CIRRUS in 2014, IWC was recorded by three closed path total water together with one gas phase water instrument. The hygrometers were supplied by inlets mounted on the roof of the aircraft fuselage. Simultaneously, the IWC is determined by a cloud 5 particle spectrometer attached under an aircraft wing. Two more examples of simultaneous IWC measurements by hygrometers and cloud spectrometers are presented, but the inlets of the hygrometers were mounted at the fuselage side (Geophysica, StratoClim campaign 2017) and bottom (WB57, MacPex 2011). This combination of instruments and inlet positions provides the opportunity to experimentally study the influence of the ice particle sampling position on the IWC. As expected from theoretical considerations, we found that the IWCs provided by the roof inlets deviate from those measured under the aircraft 10 wing. Caused by the inlet position in the shadow-zone behind the aircraft cockpit, ice particles populations with mean mass sizes larger than about 25 μm radius are subject to losses, which lead to strongly underestimated IWCs. On the other hand, cloud populations with mean mass sizes smaller than about 12 μm are dominated by particle enrichment and thus overestimated IWCs. In the range of mean mass sizes between 12 and 25μm, both enrichment and losses of ice crystal can occur, depending on whether the ice crystal mass peak of the in these cases bimodal size distribution is on the smaller or larger mass mode. 15 The resulting deviations of the IWC reach factors of up to 10 or even more for losses as well as for enrichment. Since the mean mass size of ice crystals increases with temperature, losses are more pronounced at higher temperatures while at lower temperatures IWC is more affected by enrichment. In contrast, in the cases where the hygrometer inlets were mounted at the fuselage side or bottom, the agreement of IWCs is -due to undisturbed ice particle sampling, as expected from theorymost frequently within a factor of 2.5, independently of the mean ice crystal sizes. Summarizing, in case IWC needs to be detected 20 1 Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-373 Manuscript under review for journal Atmos. Meas. Tech. Discussion started: 17 October 2017 c


Atmospheric Measurement Techniques Discussions | 2018

Airborne limb-imaging measurements of temperature, HNO 3 , O 3 , ClONO 2 , H 2 O and CFC-12 during the Arctic winter 2015/16: characterization, in-situ validation and comparison to Aura/MLS

Sören Johansson; Wolfgang Woiwode; M. Höpfner; F. Friedl-Vallon; Anne Kleinert; E. Kretschmer; Thomas Latzko; J. Orphal; Peter Preusse; Jörn Ungermann; Michelle L. Santee; Tina Jurkat-Witschas; Andreas Marsing; Christiane Voigt; Andreas Giez; Martina Krämer; Christian Rolf; A. Zahn; Andreas Engel; B.-M. Sinnhuber; H. Oelhaf

The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) was operated on board the German High Altitude and Long Range Research Aircraft (HALO) during the PGS (POLSTRACC/GWLCYCLE/SALSA) aircraft campaigns in the Arctic winter 2015/2016. Research flights were conducted from 17 December 2015 until 18 March 2016 within 25–87 N, 80W–30 E. From the GLORIA infrared limb-emission measurements, two-dimensional cross sections of temperature, HNO3, O3, ClONO2, H2O and CFC-12 are retrieved. During 15 scientific flights of the PGS campaigns the GLORIA instrument measured more than 15 000 atmospheric profiles at high spectral resolution. Dependent on flight altitude and tropospheric cloud cover, the profiles retrieved from the measurements typically range between 5 and 14 km, and vertical resolutions between 400 and 1000 m are achieved. The estimated total (random and systematic) 1σ errors are in the range of 1 to 2 K for temperature and 10 % to 20 % relative error for the discussed trace gases. Comparisons to in situ instruments deployed on board HALO have been performed. Over all flights of this campaign the median differences and median absolute deviations between in situ and GLORIA observations are−0.75K±0.88 K for temperature, −0.03ppbv± 0.85 ppbv for HNO3, −3.5ppbv± 116.8 ppbv for O3,−15.4pptv±102.8 pptv for ClONO2,−0.13ppmv± 0.63 ppmv for H2O and −19.8pptv± 46.9 pptv for CFC-12. Seventy-three percent of these differences are within twice the combined estimated errors of the cross-compared instruments. Events with larger deviations are explained by atmospheric variability and different sampling characteristics of the instruments. Additionally, comparisons of GLORIA HNO3 and O3 with measurements of the Aura Microwave Limb Sounder (MLS) instrument show highly consistent structures in trace gas distributions and illustrate the potential of the high-spectral-resolution limb-imaging GLORIA observations for resolving narrow mesoscale structures in the upper troposphere and lower stratosphere (UTLS).


Atmospheric Chemistry and Physics | 2012

Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results

M. von Hobe; Slimane Bekki; S. Borrmann; F. Cairo; F. D'Amato; G. Di Donfrancesco; Andreas Dörnbrack; A. Ebersoldt; Martin Ebert; Claudia Emde; I. Engel; M. Ern; W. Frey; S. Genco; Sabine Griessbach; J.-U. Grooß; T. Gulde; G. Günther; E. Hösen; Lars Hoffmann; Viktória Homonnai; C. R. Hoyle; Ivar S. A. Isaksen; D. R. Jackson; Imre M. Jánosi; Roderic L. Jones; K. Kandler; C. Kalicinsky; A. Keil; Sergey Khaykin


Atmospheric Chemistry and Physics | 2016

A microphysics guide to cirrus clouds – Part 1: Cirrus types

Martina Krämer; Christian Rolf; Anna Luebke; Armin Afchine; N. Spelten; Anja Costa; J. Meyer; M. Zöger; Jessica Smith; R. L. Herman; Bernhard Buchholz; Volker Ebert; Darrel Baumgardner; Stephan Borrmann; Marcus Klingebiel; Linnea Marie Avallone


Atmospheric Chemistry and Physics | 2016

The origin of midlatitude ice clouds and the resulting influence on their microphysical properties

Anna Luebke; Armin Afchine; Anja Costa; J. Meyer; Christian Rolf; N. Spelten; Linnea Marie Avallone; Darrel Baumgardner; Martina Krämer


Atmospheric Chemistry and Physics | 2012

Ice water content of Arctic, midlatitude, and tropical cirrus – Part 2: Extension of the database and new statistical analysis

Anna Luebke; Linnea M. Avallone; C. Schiller; J. Meyer; Christian Rolf; Martina Krämer


Atmospheric Chemistry and Physics | 2015

Two decades of water vapor measurements with the FISH fluorescence hygrometer: a review

J. Meyer; Christian Rolf; C. Schiller; Susanne Rohs; N. Spelten; Armin Afchine; M. Zöger; N. Sitnikov; Troy Thornberry; Andrew W. Rollins; Zoltán Bozóki; D. Tátrai; Volker Ebert; B. Kühnreich; P. Mackrodt; O. Möhler; Harald Saathoff; Karen H. Rosenlof; Martina Krämer


Atmospheric Chemistry and Physics | 2012

Lidar observation and model simulation of a volcanic-ash-induced cirrus cloud during the Eyjafjallajökull eruption

Christian Rolf; Martina Krämer; C. Schiller; M. Hildebrandt; Martin Riese

Collaboration


Dive into the Christian Rolf's collaboration.

Top Co-Authors

Avatar

Martina Krämer

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

N. Spelten

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Armin Afchine

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Anja Costa

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Martin Riese

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

M. Zöger

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar

Jens-Uwe Grooss

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rolf Müller

Forschungszentrum Jülich

View shared research outputs
Researchain Logo
Decentralizing Knowledge